Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov;8(11):3696-701.
doi: 10.1021/nl8018802. Epub 2008 Oct 24.

Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage

Affiliations

Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage

Zhiyong Zhang et al. Nano Lett. 2008 Nov.

Abstract

Near ballistic n-type single-walled carbon nanotube field-effect transistors (SWCNT FETs) have been fabricated with a novel self-aligned gate structure and a channel length of about 120 nm on a SWCNT with a diameter of 1.5 nm. The device shows excellent on- and off-state performance, including high transconductance of up to 25 microS, small subthreshold swing of 100 mV/dec, and gate delay time of 0.86 ps, suggesting that the device can potentially work at THz regime. Quantitative analysis on the electrical characteristics of a long channel device fabricated on the same SWCNT reveals that the SWCNT has a mean-free-path of 191 nm, and the electron mobility of the device reaches 4650 cm(2)/Vs. When benchmarked by the metric CV/ I vs Ion/Ioff, the n-type SWCNT FETs show significantly better off-state leakage than that of the Si-based n-type FETs with similar channel length. An important advantage of this self-aligned gate structure is that any suitable gate materials can be used, and in particular it is shown that the threshold voltage of the self-aligned n-type FETs can be adjusted by selecting gate metals with different work functions.

PubMed Disclaimer

LinkOut - more resources