Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Oct 23:5:18.
doi: 10.1186/1742-9994-5-18.

DNA damage in preserved specimens and tissue samples: a molecular assessment

Affiliations

DNA damage in preserved specimens and tissue samples: a molecular assessment

Juergen Zimmermann et al. Front Zool. .

Abstract

The extraction of genetic information from preserved tissue samples or museum specimens is a fundamental component of many fields of research, including the Barcode of Life initiative, forensic investigations, biological studies using scat sample analysis, and cancer research utilizing formaldehyde-fixed, paraffin-embedded tissue. Efforts to obtain genetic information from these sources are often hampered by an inability to amplify the desired DNA as a consequence of DNA damage.Previous studies have described techniques for improved DNA extraction from such samples or focused on the effect of damaging agents - such as light, oxygen or formaldehyde - on free nucleotides.We present ongoing work to characterize lesions in DNA samples extracted from preserved specimens. The extracted DNA is digested to single nucleosides with a combination of DNase I, Snake Venom Phosphodiesterase, and Antarctic Phosphatase and then analyzed by HPLC-ESI-TOF-MS.We present data for moth specimens that were preserved dried and pinned with no additional preservative and for frog tissue samples that were preserved in either ethanol, or formaldehyde, or fixed in formaldehyde and then preserved in ethanol. These preservation methods represent the most common methods of preserving animal specimens in museum collections. We observe changes in the nucleoside content of these samples over time, especially a loss of deoxyguanosine. We characterize the fragmentation state of the DNA and aim to identify abundant nucleoside lesions. Finally, simple models are introduced to describe the DNA fragmentation based on nicks and double-strand breaks.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Panel A shows the size distribution of DNA extracted from moth samples. See methods for details of size determination. Panel B shows the raw data of the FAM-labeled DNA fragments, averaged for each year. Data were scaled to the same height for comparison. Note the decrease in peak width with sample age. Panel C shows the raw data obtained for moth sample 3 from a Capillary Electrophoresis run. Labeling the DNA without any prior treatment results in the fragment distribution shown here in red. An aliquot of the same sample was treated with Antarctic Phosphatase before the TdT labeling reaction, shown in blue. The size distribution of the fragments does not change, while the intensity is increased by a factor of 2–15 for different samples. The LIZ1200 size standard is shown in orange, numbers indicate the fragment size in bases.
Figure 2
Figure 2
PCR of a 500-bp part of the moth barcode sequence. An amplicon was only obtained for the samples collected in 2005 and weakly for samples from 2000. All other reactions show only primer dimers.
Figure 3
Figure 3
UV-Chromatogram of Moth specimen 30, collected in 1974. Digest of a moth sample, showing the four standard deoxynucleosides and several additional components. The numbers 1, 2, 3, 4 (exact masses 245.07(5), 380.03(4), 367.17(6) and 355.18(7) Da, respectively) label components of the DNA preparation not yet identified. These are potential lesions preventing PCR amplification from these samples. They are not present in the youngest specimens.
Figure 4
Figure 4
Estimate of dG content in moth DNA. All moth samples were subjected to LC-MS analysis. For the software analysis, ions of the four deoxynucleosides were extracted from the total ion currents and resulting peaks were integrated. The plot shows the ratios of integrals for dA/dT and dG/dC, respectively. While the dA/dT ratio stays fairly constant over time, the dG/dC ratio drops very much. Indeed, dG cannot be detected in the oldest moth samples.
Figure 5
Figure 5
Pulsed Field Agarose Gel of extracted frog DNA. Only the samples preserved in ethanol alone show detectable levels of DNA in this gel. The average size of the fragments is ~18 kbp. For the formaldehyde preserved samples, only sample 7b shows a detectable smear of DNA.
Figure 6
Figure 6
PCR using extracted frog DNA. Panel A shows amplification of a 1,000-bp segment of the mitochondrial 16S gene from ethanol preserved samples. (sample 1a-8a). Panel B shows the same amplification from formaldehyde-exposed samples (sample 1b-8b). Panel C shows the amplification of a 500-bp segment of the nuclear rhodopsin gene (sample 1a-8a) from ethanol preserved samples. No product was observed for the rhodopsin gene with samples 1b-8b, which were exposed to formaldehyde during preservation.
Figure 7
Figure 7
UV-Chromatogram of digested frog DNA, sample 1a. RNA had not been completely removed before digestion, "r" denotes ribo-nucleosides, "d" denotes deoxy-nucleosides.
Figure 8
Figure 8
UV-Chromatograms of all frog samples. Panel A shows those samples preserved only in ethanol. The overall concentration of extracted DNA varies somewhat, but no extra peaks are detected in these samples. Panel B shows those samples preserved using formaldehyde. The overall yield of DNA is considerably lower, using tissue samples of comparable weight. Additional peaks, which would indicate potential lesions or formaldehyde adducts, are not apparent.
Figure 9
Figure 9
Modeling of DNA fragmentation. Two models of DNA fragmentation were analyzed. Model 1 is based on double-strand breaks. Panel A.1 shows the resulting average fragment sizes that occur over time for an initial fragment length of 1 Mbp, assuming different rates of strand breaks per day. Panel A.2 shows fragment sizes resulting from different initial lengths of DNA, for a rate of two strand breaks per day. Model 2 is based on nicking of single strands in double-stranded DNA. Panel B shows the distribution of fragments resulting from a starting size of 1 Mbp, at a rate of 18 nicks per day.

Similar articles

Cited by

References

    1. Wandeler P, Hoeck PE, Keller LF. Back to the future: museum specimens in population genetics. Trends Ecol Evol. 2007;22:634–642. - PubMed
    1. Stivers JT, Kuchta RD. DNA Damage and Repair. Chemical Reviews. 2006;106 - PubMed
    1. Lehmann U, Kreipe H. Real-time PCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embedded biopsies. Methods. 2001;25:409–418. - PubMed
    1. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362:709–715. - PubMed
    1. Paabo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M. Genetic analyses from ancient DNA. Annu Rev Genet. 2004;38:645–679. - PubMed

LinkOut - more resources