Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Feb;88(2):79-90.
doi: 10.1016/j.ejcb.2008.08.005. Epub 2008 Oct 31.

Perturbing plasma membrane hemichannels attenuates calcium signalling in cardiac cells and HeLa cells expressing connexins

Affiliations

Perturbing plasma membrane hemichannels attenuates calcium signalling in cardiac cells and HeLa cells expressing connexins

Vandana Verma et al. Eur J Cell Biol. 2009 Feb.

Abstract

Many cell signalling pathways are driven by changes in cytosolic calcium. We studied the effects of a range of inhibitors of connexin channels on calcium signalling in cardiac cells and HeLa cells expressing connexins. Gap 26 and 27, peptides that mimic short sequences in each of the extracellular loops of connexin 43, and anti-peptide antibodies generated to extracellular loop sequences of connexins, inhibited calcium oscillations in neonatal cardiac myocytes, as well as calcium transients induced by ATP in HL-1 cells originating from cardiac atrium and HeLa cells expressing connexin 43 or 26. Comparison of single with confluent cells showed that intracellular calcium responses were suppressed by interaction of connexin mimetic peptides and antibodies with hemichannels present on unapposed regions of the plasma membrane. To investigate how inhibition of hemichannels in the plasma membrane by the applied reagents was communicated to calcium store operation in the endoplasmic reticulum, we studied the effect of Gap 26 on calcium entry into cells and on intracellular IP3 release; both were inhibited by Gap 26. Calcium transients in both connexin 43- and connexin 26-expressing HeLa cells were inhibited by the peptides suggesting that the extended cytoplasmic carboxyl tail domain of larger connexins and their interactions with intracellular scaffolding/auxiliary proteins were unlikely to feature in transmitting peptide-induced perturbations at hemichannels in the plasma membrane to IP3 receptor channel central to calcium signalling. The results suggest that calcium levels in a microenvironment functionally connecting plasma membrane connexin hemichannels to downstream IP3-dependent calcium release channels in the endoplasmic reticulum were disrupted by the connexin mimetic peptide, although implication of other candidate hemichannels cannot be entirely discounted. Since calcium signalling is fundamental to the maintenance of cellular homeostasis, connexin hemichannels emerge as therapeutic targets open to manipulation by reagents interacting with external regions of these channels.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources