Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Mar;32(1):13-22.
doi: 10.1269/jrr.32.13.

Gamma-ray- and fission neutron-induced micronuclei in PHA stimulated and unstimulated human lymphocytes

Affiliations
Free article

Gamma-ray- and fission neutron-induced micronuclei in PHA stimulated and unstimulated human lymphocytes

S Ban et al. J Radiat Res. 1991 Mar.
Free article

Abstract

Two groups of normal human blood cells, one stimulated with phytohaemagglutinin (PHA) for 24 hr (G1-S phase of the cell cycle) and one unstimulated (G0 phase), were irradiated with 60Co gamma rays or 252Cf radiation. A comparison of radiation-induced micronucleus frequencies showed that the high-dose-rate gamma rays were more effective in inducing micronuclei than low-dose-rate gamma rays. In the cells exposed to low-dose-rate irradiation, there was little difference between the frequency of micronuclei in the G0 phase and the G1-S phase. However, cells in the G1-S phase were more sensitive than G0-phase cells to high-dose-rate gamma rays. The relative biological effectiveness of 252Cf neutron irradiation measured in micronucleus assays was consistent with the value obtained for the lethal effect of 252Cf on cultured cells.

PubMed Disclaimer