Plasmodium falciparum purine nucleoside phosphorylase is critical for viability of malaria parasites
- PMID: 18957439
- PMCID: PMC2602904
- DOI: 10.1074/jbc.M807218200
Plasmodium falciparum purine nucleoside phosphorylase is critical for viability of malaria parasites
Abstract
Human malaria infections resulting from Plasmodium falciparum have become increasingly difficult to treat due to the emergence of drug-resistant parasites. The P. falciparum purine salvage enzyme purine nucleoside phosphorylase (PfPNP) is a potential drug target. Previous studies, in which PfPNP was targeted by transition state analogue inhibitors, found that those inhibiting human PNP and PfPNPs killed P. falciparum in vitro. However, many drugs have off-target interactions, and genetic evidence is required to demonstrate single target action for this class of potential drugs. We used targeted gene disruption in P. falciparum strain 3D7 to ablate PNP expression, yielding transgenic 3D7 parasites (Deltapfpnp). Lysates of the Deltapfpnp parasites showed no PNP activity, but activity of another purine salvage enzyme, adenosine deaminase (PfADA), was normal. When compared with wild-type 3D7, the Deltapfpnp parasites showed a greater requirement for exogenous purines and a severe growth defect at physiological concentrations of hypoxanthine. Drug assays using immucillins, specific transition state inhibitors of PNP, were performed on wild-type and Deltapfpnp parasites. The Deltapfpnp parasites were more sensitive to PNP inhibitors that bound hPNP tighter and less sensitive to MT-ImmH, an inhibitor with 100-fold preference for PfPNP over hPNP. The results demonstrate the importance of purine salvage in P. falciparum and validate PfPNP as the target of immucillins.
Figures





Similar articles
-
Purine-less death in Plasmodium falciparum induced by immucillin-H, a transition state analogue of purine nucleoside phosphorylase.J Biol Chem. 2002 Feb 1;277(5):3226-31. doi: 10.1074/jbc.M105906200. Epub 2001 Nov 12. J Biol Chem. 2002. PMID: 11706018
-
Energetic mapping of transition state analogue interactions with human and Plasmodium falciparum purine nucleoside phosphorylases.J Biol Chem. 2005 Aug 26;280(34):30320-8. doi: 10.1074/jbc.M505033200. Epub 2005 Jun 16. J Biol Chem. 2005. PMID: 15961383
-
Plasmodium falciparum purine nucleoside phosphorylase: crystal structures, immucillin inhibitors, and dual catalytic function.J Biol Chem. 2004 Apr 30;279(18):18103-6. doi: 10.1074/jbc.C400068200. Epub 2004 Feb 23. J Biol Chem. 2004. PMID: 14982926
-
Targeting Plasmodium falciparum purine salvage enzymes: a look at structure-based drug development.Infect Disord Drug Targets. 2010 Jun;10(3):191-9. doi: 10.2174/187152610791163408. Infect Disord Drug Targets. 2010. PMID: 20480551 Review.
-
Transition states and inhibitors of the purine nucleoside phosphorylase family.Curr Top Med Chem. 2005;5(13):1237-58. doi: 10.2174/156802605774463088. Curr Top Med Chem. 2005. PMID: 16305529 Review.
Cited by
-
Evaluation of antiplasmodial activity in silico and in vitro of N-acylhydrazone derivatives.BMC Chem. 2022 Jul 9;16(1):50. doi: 10.1186/s13065-022-00843-9. BMC Chem. 2022. PMID: 35810303 Free PMC article.
-
The structure of His-tagged Geobacillus stearothermophilus purine nucleoside phosphorylase reveals a `spanner in the works'.Acta Crystallogr F Struct Biol Commun. 2022 Dec 1;78(Pt 12):416-422. doi: 10.1107/S2053230X22011025. Epub 2022 Nov 28. Acta Crystallogr F Struct Biol Commun. 2022. PMID: 36458621 Free PMC article.
-
Transition Path Sampling Based Calculations of Free Energies for Enzymatic Reactions: The Case of Human Methionine Adenosyl Transferase and Plasmodium vivax Adenosine Deaminase.J Phys Chem B. 2022 Jul 28;126(29):5413-5420. doi: 10.1021/acs.jpcb.2c03251. Epub 2022 Jul 13. J Phys Chem B. 2022. PMID: 35830574 Free PMC article.
-
Conservation of structure and activity in Plasmodium purine nucleoside phosphorylases.BMC Struct Biol. 2009 Jul 3;9:42. doi: 10.1186/1472-6807-9-42. BMC Struct Biol. 2009. PMID: 19575810 Free PMC article.
-
Central carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier.Trends Microbiol. 2011 Jul;19(7):307-14. doi: 10.1016/j.tim.2011.03.008. Epub 2011 May 10. Trends Microbiol. 2011. PMID: 21561773 Free PMC article.
References
-
- Greenwood, B., and Mutabingwa, T. (2002) Nature 415 670-672 - PubMed
-
- Trape, J. F., Pison, G., Spiegel, A., Enel, C., and Rogier, C. (2002) Trends Parasitol. 18 224-230 - PubMed
-
- Daddona, P. E., Wiesmann, W. P., Lambros, C., Kelley, W. N., and Webster, H. K. (1984) J. Biol. Chem. 259 1472-1475 - PubMed
-
- Daddona, P. E., Wiesmann, W. P., Milhouse, W., Chern, J. W., Townsend, L. B., Hershfield, M. S., and Webster, H. K. (1986) J. Biol. Chem. 261 11667-11673 - PubMed
-
- Ting, L. M., Shi, W., Lewandowicz, A., Singh, V., Mwakingwe, A., Birck, M. R., Ringia, E. A., Bench, G., Madrid, D. C., Tyler, P. C., Evans, G. B., Furneaux, R. H., Schramm, V. L., and Kim, K. (2005) J. Biol. Chem. 280 9547-9554 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous