Gene expression data classification using consensus independent component analysis
- PMID: 18973863
- PMCID: PMC5054104
- DOI: 10.1016/S1672-0229(08)60022-4
Gene expression data classification using consensus independent component analysis
Abstract
We propose a new method for tumor classification from gene expression data, which mainly contains three steps. Firstly, the original DNA microarray gene expression data are modeled by independent component analysis (ICA). Secondly, the most discriminant eigenassays extracted by ICA are selected by the sequential floating forward selection technique. Finally, support vector machine is used to classify the modeling data. To show the validity of the proposed method, we applied it to classify three DNA microarray datasets involving various human normal and tumor tissue samples. The experimental results show that the method is efficient and feasible.
Figures

Similar articles
-
Tumor classification by partial least squares using microarray gene expression data.Bioinformatics. 2002 Jan;18(1):39-50. doi: 10.1093/bioinformatics/18.1.39. Bioinformatics. 2002. PMID: 11836210
-
Performance comparison of SLFN training algorithms for DNA microarray classification.Adv Exp Med Biol. 2011;696:135-43. doi: 10.1007/978-1-4419-7046-6_14. Adv Exp Med Biol. 2011. PMID: 21431554
-
Developing optimal prediction models for cancer classification using gene expression data.J Bioinform Comput Biol. 2004 Jan;1(4):681-94. doi: 10.1142/s0219720004000351. J Bioinform Comput Biol. 2004. PMID: 15290759
-
Artificial intelligence techniques for bioinformatics.Appl Bioinformatics. 2002;1(4):191-222. Appl Bioinformatics. 2002. PMID: 15130837 Review.
-
Statistical methods for microarray assays.J Appl Genet. 2002;43(3):269-78. J Appl Genet. 2002. PMID: 12177516 Review.
Cited by
-
Independent component analysis: mining microarray data for fundamental human gene expression modules.J Biomed Inform. 2010 Dec;43(6):932-44. doi: 10.1016/j.jbi.2010.07.001. Epub 2010 Jul 7. J Biomed Inform. 2010. PMID: 20619355 Free PMC article.
-
Comparison of data-merging methods with SVM attribute selection and classification in breast cancer gene expression.BMC Bioinformatics. 2012 May 8;13 Suppl 7(Suppl 7):S9. doi: 10.1186/1471-2105-13-S7-S9. BMC Bioinformatics. 2012. PMID: 22595006 Free PMC article.
-
A fuzzy based feature selection from independent component subspace for machine learning classification of microarray data.Genom Data. 2016 Feb 23;8:4-15. doi: 10.1016/j.gdata.2016.02.012. eCollection 2016 Jun. Genom Data. 2016. PMID: 27081632 Free PMC article.
-
Research on predicting 2D-HP protein folding using reinforcement learning with full state space.BMC Bioinformatics. 2019 Dec 24;20(Suppl 25):685. doi: 10.1186/s12859-019-3259-6. BMC Bioinformatics. 2019. PMID: 31874607 Free PMC article.
-
A glance at DNA microarray technology and applications.Bioimpacts. 2011;1(2):75-86. doi: 10.5681/bi.2011.011. Epub 2011 Aug 4. Bioimpacts. 2011. PMID: 23678411 Free PMC article.
References
-
- Alizadeh A.A. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–511. - PubMed
-
- Golub T.R. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286:531–537. - PubMed
-
- Bittner M. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature. 2000;406:536–540. - PubMed
-
- Furey T.S. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics. 2000;16:906–914. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous