Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2008 Oct;4(10):e1000248.
doi: 10.1371/journal.pgen.1000248. Epub 2008 Oct 31.

Leaving the past behind

Affiliations
Comment

Leaving the past behind

E Jean Finnegan et al. PLoS Genet. 2008 Oct.
No abstract available

PubMed Disclaimer

Figures

Figure 1
Figure 1. Locus-Specific Reactivation of the MuDR Transposon.
When MuDR and Muk are both present in one plant, the MuDR elements become epigenetically silenced as a result of a long hairpin RNA molecule produced from Muk that acts in trans to initiate DNA methylation of MuDR elements. At most loci, once the MuDR has been silenced it remains so even after Muk segregates away (A). In contrast (B), when inserted within the Hemera (black bar) locus, MuDR was reactivated in progeny plants that did not inherit MuK.
Figure 2
Figure 2. Sites of Potential Epigenetic Reprogramming during Maize Reproduction.
The reproductive organs, the ear, and the tassel of a maize plant arise when vegetative meristems differentiate to become inflorescence meristems. Pollen, formed in the tassel, falls onto the silks where it germinates. A pollen tube, containing two identical haploid sperm nuclei, grows down the silk until it reaches the megagametophyte containing the haploid egg cell (EC) and the diploid central cell (CC). One sperm nucleus fuses with the EC and the other fuses with the CC (double fertilization), giving rise to the zygote (diploid) and endosperm (triploid), which provides nutrients to the developing embryo. Epigenetic reprogramming that removes methylcytosine from the control regions of imprinted genes occurs in the CC but not in the EC, leading to differential expression of these genes in endosperm . It is likely that other, as-yet uncharacterised, epigenetic reprogramming events occur during pollen or egg cell formation as well as during early stages of embryo or endosperm development.

Comment on

References

    1. Morgan HD, Sutherland HG, Martin DI, Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet. 1999;23:314–318. - PubMed
    1. Roemer I, Reik W, Dean W, Klose J. Epigenetic inheritance in the mouse. Curr Biol. 1997;7:277–280. - PubMed
    1. Cavalli G, Paro R. The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell. 1998;93:505–518. - PubMed
    1. Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature. 1999;401:157–161. - PubMed
    1. Alleman M, Sidorenko L, McGinnis K, Seshadri V, Dorweiler JE, et al. An RNA-dependent RNA polymerase is required for paramutation in maize. Nature. 2006;442:295–298. - PubMed

Substances