Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jan;11(1):59-98.
doi: 10.1089/ars.2008.2104.

Cellular senescence: molecular mechanisms, in vivo significance, and redox considerations

Affiliations
Review

Cellular senescence: molecular mechanisms, in vivo significance, and redox considerations

Michael Muller. Antioxid Redox Signal. 2009 Jan.

Abstract

Cellular senescence is recognized as a critical cellular response to prolonged rounds of replication and environmental stresses. Its defining characteristics are arrested cell-cycle progression and the development of aberrant gene expression with proinflammatory behavior. Whereas the mechanistic events associated with senescence are generally well understood at the molecular level, the impact of senescence in vivo remains to be fully determined. In addition to the role of senescence as an antitumor mechanism, this review examines cellular senescence as a factor in organismal aging and age-related diseases, with particular emphasis on aberrant gene expression and abnormal paracrine signaling. Senescence as an emerging factor in tissue remodeling, wound repair, and infection is considered. In addition, the role of oxidative stress as a major mediator of senescence and the role of NAD(P)H oxidases and changes to intracellular GSH/GSSG status are reviewed. Recent findings indicate that senescence and the behavior of senescent cells are amenable to therapeutic intervention. As the in vivo significance of senescence becomes clearer, the challenge will be to modulate the adverse effects of senescence without increasing the risks of other diseases, such as cancer. The uncoupled relation between cell-cycle arrest and the senescent phenotype suggests that this is an achievable outcome.

PubMed Disclaimer

MeSH terms

LinkOut - more resources