Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep;13(8):807-11.
doi: 10.1016/j.ejpain.2008.09.010. Epub 2008 Oct 31.

Gabapentin reverses microglial activation in the spinal cord of streptozotocin-induced diabetic rats

Affiliations

Gabapentin reverses microglial activation in the spinal cord of streptozotocin-induced diabetic rats

Rachel Wodarski et al. Eur J Pain. 2009 Sep.

Abstract

Diabetes mellitus is the leading cause of peripheral neuropathy worldwide. Despite this high level of incidence, underlying mechanisms of the development and maintenance of neuropathic pain are still poorly understood. Evidence supports a prominent role of glial cells in neuropathic pain states. Gabapentin is used clinically and shows some efficacy in the treatment of neuropathic pain. Here we investigate the distribution and activation of spinal microglia and astrocytes in streptozotocin (STZ)-diabetic rats and the effect of the gold standard analgesic, Gabapentin, on these cells. Mechanical allodynia was observed in four week-diabetic rats. Oral administration of Gabapentin significantly attenuated mechanical allodynia. Quantification of cell markers Iba-1 for microglia and GFAP for astrocytes revealed extensive activation of microglia in the dorsal horn of diabetic rats, whereas a reduction in the number of astrocytes could be observed. In addition, an attenuation of microglial activation correlated with reduced allodynia following Gabapentin treatment, while Gabapentin had no effect on the number of astrocytes. Here we show a role of microglia in STZ-induced mechanical allodynia and furthermore, that the anti-allodynic effect of Gabapentin may be linked to a reduction of spinal microglial activation. Astrocytic activation in this model appears to be limited and is unaffected by Gabapentin treatment. Consequently, spinal microglial activation is a key mechanism underlying diabetic neuropathy. Furthermore, we suggest that Gabapentin may exert its anti-allodynic actions partially through alterations of microglial cell function.

PubMed Disclaimer

Publication types

MeSH terms