Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009;72(1):1-13.
doi: 10.1080/15287390802414471.

Fine ambient particles from various sites in europe exerted a greater IgE adjuvant effect than coarse ambient particles in a mouse model

Affiliations
Comparative Study

Fine ambient particles from various sites in europe exerted a greater IgE adjuvant effect than coarse ambient particles in a mouse model

Torunn Alberg et al. J Toxicol Environ Health A. 2009.

Abstract

In the European Union (EU)-funded project Respiratory Allergy and Inflammation due to Ambient Particles (RAIAP), coarse and fine ambient particulate matter (PM) was collected at traffic dominated locations in Oslo, Rome, Lodz, and Amsterdam, in the spring, summer, and winter 2001/2002. PM was also collected in de Zilk, a rural seaside background location in the Netherlands. The aim of this study was to screen the ambient PM fractions for allergy adjuvant activity measured as the production of allergen- (ovalbumin-) specific immunoglobulin (Ig) E following subcutaneous (sc) injection into the footpad of mice. A second aim was to determine whether the 6-d popliteal lymph node (PLN) assay can be used to detect an allergy adjuvant activity. Allergy screening for IgE adjuvant activity showed that in the presence of ovalbumin (Ova) 12 out of 13 of the fine ambient PM fractions exerted a significant IgE adjuvant activity. In contrast, only 3 out of 13 of the coarse PM fractions had significant adjuvant activity. Overall, fine ambient PM exerted significantly greater IgE adjuvant activity per unit mass than coarse PM. No significant differences were observed between locations or seasons. Substantial higher levels of specific components of PM such as vanadium (V), nickel (Ni), zinc (Zn), ammonium (NH(4)), and sulfate (SO(4)) were present in the fine compared to coarse PM fractions. However, differences in the content of these components among fine PM fractions did not reflect the variation in the levels of IgE anti-Ova. Still, when comparing all seasons overall, positive correlations were observed between V, Ni, and SO(4) and the allergen specific IgE levels. The PLN responses (weight and cell number) to Ova and ambient PM in combination were significantly higher than to Ova or PM alone. Still, the PLN assay appears not to be useful as a quantitative assay for screening of allergy adjuvant activity since no correlation was observed between PLN responses and allergen specific IgE levels. In conclusion, fine ambient PM fractions consistently were found to increase the allergen-specific IgE responses more than the coarse ones. Our finding is in agreement with the notion that traffic-related air pollution contributes to the disease burden in asthma and allergy, and points to fine and ultrafine ambient PM as the most important fractions in relation to allergic diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources