Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Aug;83(3):339-55.
doi: 10.1111/j.1469-185x.2008.00046.x.

Insect thermal tolerance: what is the role of ontogeny, ageing and senescence?

Affiliations
Review

Insect thermal tolerance: what is the role of ontogeny, ageing and senescence?

Ken Bowler et al. Biol Rev Camb Philos Soc. 2008 Aug.

Abstract

Temperature has dramatic evolutionary fitness consequences and is therefore a major factor determining the geographic distribution and abundance of ectotherms. However, the role that age might have on insect thermal tolerance is often overlooked in studies of behaviour, ecology, physiology and evolutionary biology. Here, we review the evidence for ontogenetic and ageing effects on traits of high- and low-temperature tolerance in insects and show that these effects are typically pronounced for most taxa in which data are available. We therefore argue that basal thermal tolerance and acclimation responses (i.e. phenotypic plasticity) are strongly influenced by age and/or ontogeny and may confound studies of temperature responses if unaccounted for. We outline three alternative hypotheses which can be distinguished to propose why development affects thermal tolerance in insects. At present no studies have been undertaken to directly address these options. The implications of these age-related changes in thermal biology are discussed and, most significantly, suggest that the temperature tolerance of insects should be defined within the age-demographics of a particular population or species. Although we conclude that age is a source of variation that should be carefully controlled for in thermal biology, we also suggest that it can be used as a valuable tool for testing evolutionary theories of ageing and the cellular and genetic basis of thermal tolerance.

PubMed Disclaimer

LinkOut - more resources