Modulation of collagen synthesis by growth factors: the role of ascorbate-stimulated lipid peroxidation
- PMID: 1898064
- DOI: 10.1016/0003-9861(91)90434-k
Modulation of collagen synthesis by growth factors: the role of ascorbate-stimulated lipid peroxidation
Abstract
Ascorbic acid has been shown to stimulate collagen synthesis through induction of lipid peroxidation leading to increased transcription of the collagen genes. The mechanism by which lipid peroxidation stimulates collagen transcription is unknown; however, an alteration of cell membranes may affect the activity of serum growth factors leading to a change in gene expression. To test this hypothesis, we treated dermal fibroblasts with transforming growth factor-beta (TGF-beta), epidermal growth factor (EGF), interleukin-1 (IL-1), platelet-derived growth factor (PDGF), or fibroblast growth factor (FGF) in the presence of lipid peroxidation stimulating (200 microM) and nonstimulating (1 microM) concentrations of ascorbic acid. EGF and IL-1 had no effect on collagen synthesis at either concentration of ascorbic acid. FGF affected collagen synthesis only in the presence of 200 microM ascorbic acid, producing both a stimulation (0.4-2 ng/ml) and an inhibition (greater than 50 ng/ml). PDGF and TGF-beta stimulated collagen synthesis in the presence of both concentrations of ascorbic acid, with TGF-beta producing an 11-fold increase in collagen synthesis in the presence of ascorbate. This synergism produced by the combination of ascorbic acid and TGF-beta was inhibitable by the lipid peroxidation inhibitor, propyl gallate. These results indicate that regulation of collagen synthesis by ascorbic acid does not occur through altering the response to EGF or Il-1. Ascorbate has no effect on PDGF but the effects of TGF-beta and FGF on collagen synthesis appear to be sensitive to lipid peroxidation.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical