Chronic imipramine but not bupropion increases arachidonic acid signaling in rat brain: is this related to 'switching' in bipolar disorder?
- PMID: 18982003
- PMCID: PMC2874651
- DOI: 10.1038/mp.2008.117
Chronic imipramine but not bupropion increases arachidonic acid signaling in rat brain: is this related to 'switching' in bipolar disorder?
Abstract
Agents effective against mania in bipolar disorder are reported to decrease turnover of arachidonic acid (AA) in phospholipids and expression of calcium-dependent AA-selective cytosolic phospholipase A(2) (cPLA(2)) in rat brain. In contrast, fluoxetine, an antidepressant that is reported to switch bipolar depressed patients to mania, increases cPLA(2) expression and AA turnover in rat brain. We therefore hypothesized that antidepressants that increase switching to mania generally increase cPLA(2) and AA turnover in brain. To test this hypothesis, adult male CDF-344 rats were administered imipramine and bupropion, with reported high and low switching rates, respectively, at daily doses of 10 and 30 mg kg(-1) i.p., respectively, or i.p. saline (control) for 21 days. Frontal cortex expression of different PLA(2) enzymes and AA turnover rates in brain when the rats were unanesthetized were measured. Compared with chronic saline, chronic imipramine but not bupropion significantly increased cortex cPLA(2) mRNA activity, protein and phosphorylation, expression of the cPLA(2) transcription factor, activator protein-2alpha (AP-2alpha) and AA turnover in phospholipids. Protein levels of secretory phospholipase A(2), calcium-independent phospholipase A(2), cyclooxygenase (COX)-1 and COX-2 were unchanged, and prostaglandin E(2) was unaffected. These results, taken with prior data on chronic fluoxetine in rats, suggest that antidepressants that increase the switching tendency of bipolar depressed patients to mania do so by increasing AA recycling and metabolism in brain. Mania in bipolar disorder thus may involve upregulated brain AA metabolism.
Figures





References
-
- Judd LL, Akiskal HS, Schettler PJ, Coryell W, Endicott J, Maser JD, et al. A prospective investigation of the natural history of the long-term weekly symptomatic status of bipolar II disorder. Arch Gen Psychiatry. 2003;60:261–269. - PubMed
-
- Boerlin HL, Gitlin MJ, Zoellner LA, Hammen CL. Bipolar depression and antidepressant-induced mania: a naturalistic study. J Clin Psychiatry. 1998;59:374–379. - PubMed
-
- Settle EC, Jr, Settle GP. A case of mania associated with fluoxetine. Am J Psychiatry. 1984;141:280–281. - PubMed
-
- Rao JS, Lee HJ, Rapoport SI, Bazinet RP. Mode of action of mood stabilizers: is the arachidonic acid cascade a common target? Mol Psychiatry. 2008;13:585–596. - PubMed
-
- Lucas KK, Dennis EA. Distinguishing phospholipase A2 types in biological samples by employing group-specific assays in the presence of inhibitors. Prostaglandins Other Lipid Mediat. 2005;77:235–248. - PubMed