Computational pathology analysis of tissue microarrays predicts survival of renal clear cell carcinoma patients
- PMID: 18982583
- DOI: 10.1007/978-3-540-85990-1_1
Computational pathology analysis of tissue microarrays predicts survival of renal clear cell carcinoma patients
Abstract
Renal cell carcinoma (RCC) can be diagnosed by histological tissue analysis where exact counts of cancerous cell nuclei are required. We propose a completely automated image analysis pipeline to predict the survival of RCC patients based on the analysis of immunohistochemical staining of MIB-1 on tissue microarrays. A random forest classifier detects cell nuclei of cancerous cells and predicts their staining. The classifier training is achieved by expert annotations of 2300 nuclei gathered from tissues of 9 different RCC patients. The application to a test set of 133 patients clearly demonstrates that our computational pathology analysis matches the prognostic performance of expert pathologists.
Similar articles
-
Nucleolus detection in the Fuhrman grading system for application in CCRC.Biomed Tech (Berl). 2014 Feb;59(1):79-86. doi: 10.1515/bmt-2013-0053. Biomed Tech (Berl). 2014. PMID: 23945111
-
pT1 clear cell renal cell carcinoma: a study of the association between MIB-1 proliferative activity and pathologic features and cancer specific survival.Cancer. 2002 Apr 15;94(8):2180-4. doi: 10.1002/cncr.10433. Cancer. 2002. PMID: 12001115
-
Application of ADC measurement in characterization of renal cell carcinomas with different pathological types and grades by 3.0T diffusion-weighted MRI.Eur J Radiol. 2012 Nov;81(11):3061-6. doi: 10.1016/j.ejrad.2012.04.028. Epub 2012 May 29. Eur J Radiol. 2012. PMID: 22651905
-
MRI phenotype in renal cancer: is it clinically relevant?Top Magn Reson Imaging. 2014 Apr;23(2):95-115. doi: 10.1097/RMR.0000000000000019. Top Magn Reson Imaging. 2014. PMID: 24690616 Free PMC article. Review.
-
Outcome prediction for renal cell carcinoma: evaluation of prognostic factors for tumours divided according to histological subtype.Pathology. 2007 Oct;39(5):459-65. doi: 10.1080/00313020701570061. Pathology. 2007. PMID: 17886093 Review.
Cited by
-
Recent Advances of Deep Learning for Computational Histopathology: Principles and Applications.Cancers (Basel). 2022 Feb 25;14(5):1199. doi: 10.3390/cancers14051199. Cancers (Basel). 2022. PMID: 35267505 Free PMC article. Review.
-
Pathology imaging informatics for quantitative analysis of whole-slide images.J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1099-108. doi: 10.1136/amiajnl-2012-001540. Epub 2013 Aug 19. J Am Med Inform Assoc. 2013. PMID: 23959844 Free PMC article. Review.
-
Automatic tumor-stroma separation in fluorescence TMAs enables the quantitative high-throughput analysis of multiple cancer biomarkers.PLoS One. 2011;6(12):e28048. doi: 10.1371/journal.pone.0028048. Epub 2011 Dec 2. PLoS One. 2011. PMID: 22164226 Free PMC article.
-
Influence of Texture and Colour in Breast TMA Classification.PLoS One. 2015 Oct 29;10(10):e0141556. doi: 10.1371/journal.pone.0141556. eCollection 2015. PLoS One. 2015. PMID: 26513238 Free PMC article.
-
[Individualization and standardization in head and neck pathology].HNO. 2025 Apr 16. doi: 10.1007/s00106-025-01627-y. Online ahead of print. HNO. 2025. PMID: 40237827 Review. German.
MeSH terms
LinkOut - more resources
Medical