Atlas-based auto-segmentation of head and neck CT images
- PMID: 18982634
- DOI: 10.1007/978-3-540-85990-1_52
Atlas-based auto-segmentation of head and neck CT images
Abstract
Treatment planning for high precision radiotherapy of head and neck (H&N) cancer patients requires accurate delineation of many structures and lymph node regions. Manual contouring is tedious and suffers from large inter- and intra-rater variability. To reduce manual labor, we have developed a fully automated, atlas-based method for H&N CT image segmentation that employs a novel hierarchical atlas registration approach. This registration strategy makes use of object shape information in the atlas to help improve the registration efficiency and robustness while still being able to account for large inter-subject shape differences. Validation results showed that our method provides accurate segmentation for many structures despite difficulties presented by real clinical data. Comparison of two different atlas selection strategies is also reported.
Similar articles
-
Using Frankenstein's creature paradigm to build a patient specific atlas.Med Image Comput Comput Assist Interv. 2009;12(Pt 2):993-1000. doi: 10.1007/978-3-642-04271-3_120. Med Image Comput Comput Assist Interv. 2009. PMID: 20426208 Free PMC article.
-
Automated skeleton based multi-modal deformable registration of head&neck datasets.Med Image Comput Comput Assist Interv. 2012;15(Pt 2):66-73. doi: 10.1007/978-3-642-33418-4_9. Med Image Comput Comput Assist Interv. 2012. PMID: 23286033
-
Construction of patient specific atlases from locally most similar anatomical pieces.Med Image Comput Comput Assist Interv. 2010;13(Pt 3):155-62. doi: 10.1007/978-3-642-15711-0_20. Med Image Comput Comput Assist Interv. 2010. PMID: 20879395 Free PMC article.
-
Review of automatic pulmonary lobe segmentation methods from CT.Comput Med Imaging Graph. 2015 Mar;40:13-29. doi: 10.1016/j.compmedimag.2014.10.008. Epub 2014 Oct 28. Comput Med Imaging Graph. 2015. PMID: 25467805 Review.
-
Automated delineation of radiotherapy volumes: are we going in the right direction?Br J Radiol. 2013 Jan;86(1021):20110718. doi: 10.1259/bjr.20110718. Br J Radiol. 2013. PMID: 23239689 Free PMC article. Review.
Cited by
-
A clinical evaluation of the performance of five commercial artificial intelligence contouring systems for radiotherapy.Front Oncol. 2023 Aug 4;13:1213068. doi: 10.3389/fonc.2023.1213068. eCollection 2023. Front Oncol. 2023. PMID: 37601695 Free PMC article.
-
Segmentation of pelvic structures for planning CT using a geometrical shape model tuned by a multi-scale edge detector.Phys Med Biol. 2014 Mar 21;59(6):1471-84. doi: 10.1088/0031-9155/59/6/1471. Epub 2014 Mar 5. Phys Med Biol. 2014. PMID: 24594798 Free PMC article.
-
Artificial intelligence in radiology.Nat Rev Cancer. 2018 Aug;18(8):500-510. doi: 10.1038/s41568-018-0016-5. Nat Rev Cancer. 2018. PMID: 29777175 Free PMC article. Review.
-
Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours.Med Phys. 2014 May;41(5):051910. doi: 10.1118/1.4871623. Med Phys. 2014. PMID: 24784389 Free PMC article.
-
Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer.Radiat Oncol. 2012 Sep 18;7:160. doi: 10.1186/1748-717X-7-160. Radiat Oncol. 2012. PMID: 22989046 Free PMC article.
MeSH terms
LinkOut - more resources
Other Literature Sources
Medical