Evaluation of 5- and 6-fluoro derivatives of arachidonic acid and 5,8,14-eicosatrienoic acid as substrates and inhibitors of 5-lipoxygenase
- PMID: 1898346
- PMCID: PMC1151380
- DOI: 10.1042/bj2780549
Evaluation of 5- and 6-fluoro derivatives of arachidonic acid and 5,8,14-eicosatrienoic acid as substrates and inhibitors of 5-lipoxygenase
Abstract
The 5- and 6-fluoro derivatives of arachidonic acid (5F-ETE and 6F-ETE) were evaluated as substrates of rat basophilic leukaemia cell (RBL-1) 5-lipoxygenase. 5F-ETE was found to be a poor substrate and was converted into a single product, 5-oxoeicosa-6,8,11,14-tetraenoic acid (5-oxo-ETE). 6F-ETE was a good substrate and was mainly converted into 5-hydroperoxy-6-fluoroeicosa-6,8,11,14-tetraenoic acid (5-OOH-6F-ETE) with concomitant formation of a small amount of 5-oxo-6-fluoroeicosa-6,8,11,14-tetraenoic acid (5-oxo-6F-ETE). However the formation of 5,12-dihydroxy-6-fluoroeicosa-6,8,10,14-tetraenoic acids, epimeric at C-12, was not observed. Eicosa-5(Z),8(Z),14(Z)-trienoic acid (ET), previously described as a good substrate of 5-lipoxygenase, is oxidized mainly to 5-hydroperoxyeicosa-6,8,14-trienoic acid (5-OOH-ET), which does not serve as a substrate for the leukotriene A4 (LTA4) synthase activity of 5-lipoxygenase [Navé, Dulery, Gaget & Ducep (1988) Prostaglandins 36, 385-398]. To allow a better estimation of the effect of fluorine substitution on the rate of oxidation of the 5,8-cis,cis-diene moiety by 5-lipoxygenase, the 5- and 6-fluoro derivatives of ET were studied as substrates. Qualitatively, the metabolism of 5F-ET and 6F-ET was found to be similar to that observed for 5F-ETE and 6F-ETE. Quantitatively, 6F-ET proved to be a somewhat better substrate than ET, whereas 5F-ET was poorly metabolized. The relative ability of arachidonic acid, ET and the corresponding 5- and 6-fluoro derivatives to inhibit the 5-lipoxygenase-catalysed oxidation of eicosa-5(Z),8(Z)-dienoic acid (ED) was also investigated. 6F-ETE and 5F-ETE were found to be effective and about equipotent inhibitors of 5-lipoxygenase in the micromolar range. In view of their close structural similarity to arachidonic acid, these two inhibitors are expected to be important tools in the study of the 5-lipoxygenase pathway in vivo.
Similar articles
-
Use of simplified substrates for the study of 5-lipoxygenase from RBL-1 cells.Prostaglandins. 1988 Sep;36(3):385-98. doi: 10.1016/0090-6980(88)90078-0. Prostaglandins. 1988. PMID: 3237999
-
Identification of 5-keto-(7E,9E,11Z,14Z)-eicosatetraenoic acid as a novel nonenzymatic rearrangement product of leukotriene A4.Arch Biochem Biophys. 1993 Nov 1;306(2):469-75. doi: 10.1006/abbi.1993.1539. Arch Biochem Biophys. 1993. PMID: 8215451
-
Synthesis of 5- and 6-fluoro derivatives of 5,8,14-eicosatrienoic and 5,8,11,14-eicosatetraenoic acids. Effects of fluorinated arachidonic acids on leukotriene C4 production by macrophages.Bioorg Med Chem. 1994 Mar;2(3):213-33. doi: 10.1016/s0968-0896(00)82016-7. Bioorg Med Chem. 1994. PMID: 7922133
-
Complement-mediated arachidonate metabolism.Prog Biochem Pharmacol. 1985;20:120-31. Prog Biochem Pharmacol. 1985. PMID: 2986155 Review.
-
Biochemistry, biology and chemistry of the 5-lipoxygenase product 5-oxo-ETE.Prog Lipid Res. 2005 Mar-May;44(2-3):154-83. doi: 10.1016/j.plipres.2005.04.002. Epub 2005 Apr 20. Prog Lipid Res. 2005. PMID: 15893379 Review.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous