Mechanisms underlying cognitive enhancement and reversal of cognitive deficits in nonhuman primates by the ampakine CX717
- PMID: 18985324
- PMCID: PMC3107999
- DOI: 10.1007/s00213-008-1360-z
Mechanisms underlying cognitive enhancement and reversal of cognitive deficits in nonhuman primates by the ampakine CX717
Abstract
Rationale: Performance of cognitive tasks in nonhuman primates (NHPs) requires specific brain regions to make decisions under different degrees of difficulty or "cognitive load."
Objective: Local cerebral metabolic activity ([18F]FDG PET imaging) in dorsolateral prefrontal cortex (DLPFC), medial temporal lobe (MTL), and dorsal striatum (DStr) is examined in NHPs performing a delayed-match-to-sample (DMS) task with variable degrees of cognitive load.
Materials and methods: Correlations between cognitive load and degree of brain metabolic activity were obtained with respect to the influence of the ampakine CX717 (Cortex Pharmaceuticals), using brain imaging and recordings of neuronal activity in NHPs and measures of intracellular calcium release in rat hippocampal slices.
Results: Activation of DLPFC, MTL, and DStr reflected changes in performance related to cognitive load within the DMS task and were engaged primarily on high load trials. Similar increased activation patterns and improved performance were also observed following administration of CX717. Sleep deprivation in NHPs produced impaired performance and reductions in brain activation which was reversed by CX717. One potential basis for this facilitation of cognition by CX717 was increased firing of task-specific hippocampal cells. Synaptic mechanisms affected by CX717 were examined in rat hippocampal slices which showed that N-methyl-D-aspartic acid-mediated release of intracellular calcium was reduced in slices from sleep-deprived rats and reversed by application of CX717 to the bathing medium.
Conclusions: The findings provide insight into how cognition is enhanced by CX717 in terms of brain, and underlying neural, processes that are activated on high vs. low cognitive load trials.
Figures







References
-
- Arai AC, Kessler M, Rogers G, Lynch G. Effects of the potent ampakine CX614 on hippocampal and recombinant AMPA receptors: interactions with cyclothiazide and GYKI 52466. Mol Pharmacol. 2000;58:802–813. - PubMed
-
- Arai AC, Xia YF, Rogers G, Lynch G, Kessler M. Benzamide-type AMPA receptor modulators form two subfamilies with distinct modes of action. J Pharmacol Exp Ther. 2002;303:1075–1085. - PubMed
-
- Bachevalier J, Mishkin M. Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys. Behav Brain Res. 1986;20:249–261. - PubMed
-
- Barcelo F, Suwazono S, Knight RT. Prefrontal modulation of visual processing in humans. Nat Neurosci. 2000;3:399–403. - PubMed
-
- Black KJ, Koller JM, Snyder AZ, Perlmutter JS. Template images for nonhuman primate neuroimaging: 2. Macaque. NeuroImage. 2001;14:744–748. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- R01 DA023573/DA/NIDA NIH HHS/United States
- DA023573/DA/NIDA NIH HHS/United States
- R01 DA007625/DA/NIDA NIH HHS/United States
- DA09085/DA/NIDA NIH HHS/United States
- DA08549/DA/NIDA NIH HHS/United States
- K05 DA000119/DA/NIDA NIH HHS/United States
- R01 DA008549/DA/NIDA NIH HHS/United States
- P50 DA006634/DA/NIDA NIH HHS/United States
- R01 DA009085/DA/NIDA NIH HHS/United States
- DA07625/DA/NIDA NIH HHS/United States
- MH61397/MH/NIMH NIH HHS/United States
- DA06634/DA/NIDA NIH HHS/United States
- R01 MH061397/MH/NIMH NIH HHS/United States
- Z01 DA000119/ImNIH/Intramural NIH HHS/United States
- R01 DA026487/DA/NIDA NIH HHS/United States