Accurate whole human genome sequencing using reversible terminator chemistry
- PMID: 18987734
- PMCID: PMC2581791
- DOI: 10.1038/nature07517
Accurate whole human genome sequencing using reversible terminator chemistry
Abstract
DNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally used long (400-800 base pair) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter reads are compared to a reference to identify intraspecies genetic variation. Here we report an approach that generates several billion bases of accurate nucleotide sequence per experiment at low cost. Single molecules of DNA are attached to a flat surface, amplified in situ and used as templates for synthetic sequencing with fluorescent reversible terminator deoxyribonucleotides. Images of the surface are analysed to generate high-quality sequence. We demonstrate application of this approach to human genome sequencing on flow-sorted X chromosomes and then scale the approach to determine the genome sequence of a male Yoruba from Ibadan, Nigeria. We build an accurate consensus sequence from >30x average depth of paired 35-base reads. We characterize four million single-nucleotide polymorphisms and four hundred thousand structural variants, many of which were previously unknown. Our approach is effective for accurate, rapid and economical whole-genome re-sequencing and many other biomedical applications.
Figures
Comment in
-
Human genetics: Individual genomes diversify.Nature. 2008 Nov 6;456(7218):49-51. doi: 10.1038/456049a. Nature. 2008. PMID: 18987731 No abstract available.
References
-
- International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931–945. - PubMed
-
- Shendure J, et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science. 2005;309:1728–1732. - PubMed
-
- Harris TD, et al. Single-molecule DNA sequencing of a viral genome. Science. 2008;320:106–109. - PubMed
Publication types
MeSH terms
Grants and funding
- Z01 HG200330/ImNIH/Intramural NIH HHS/United States
- G0701805/MRC_/Medical Research Council/United Kingdom
- B05823/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
- WT_/Wellcome Trust/United Kingdom
- MOL04534/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
