Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008;47(47):8998-9033.
doi: 10.1002/anie.200800222.

Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography

Affiliations
Review

Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography

Philip W Miller et al. Angew Chem Int Ed Engl. 2008.

Abstract

Positron emission tomography (PET) is a powerful and rapidly developing area of molecular imaging that is used to study and visualize human physiology by the detection of positron-emitting radiopharmaceuticals. Information about metabolism, receptor/enzyme function, and biochemical mechanisms in living tissue can be obtained directly from PET experiments. Unlike magnetic resonance imaging (MRI) or computerized tomography (CT), which mainly provide detailed anatomical images, PET can measure chemical changes that occur before macroscopic anatomical signs of a disease are observed. PET is emerging as a revolutionary method for measuring body function and tailoring disease treatment in living subjects. The development of synthetic strategies for the synthesis of new positron-emitting molecules is, however, not trivial. This Review highlights key aspects of the synthesis of PET radiotracers with the short-lived positron-emitting radionuclides (11)C, (18)F, (15)O, and (13)N, with emphasis on the most recent strategies.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources