Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009 Feb 1;311(2):115-24.
doi: 10.1002/jez.508.

Influence of cell volume changes on autophagic proteolysis in the perfused liver of air-breathing walking catfish (Clarias batrachus)

Affiliations
Comparative Study

Influence of cell volume changes on autophagic proteolysis in the perfused liver of air-breathing walking catfish (Clarias batrachus)

Kuheli Biswas et al. J Exp Zool A Ecol Genet Physiol. .

Abstract

Exposure of perfused liver of walking catfish (Clarias batrachus) to hypotonicity (-80 mOsmol/L) caused swelling of liver cells as evidenced by the increase in liver mass by 11.5%, and inhibition of [(3)H]leucine release (as a measure of proteolysis) by 37% from the radiolabeled perfused liver. Whereas, exposure of perfused liver to hypertonicity (+80 mOsmol/L) caused shrinkage of liver cells as evidenced by the decrease in liver mass by 10.4%, and stimulation of [(3)H]leucine release by 24%. Infusion of amino acids such as glutamine plus glycine (2 mM each) also caused increase in liver cell volume as evidenced by the increase in liver mass by 8.9%, and inhibition of [(3)H]leucine release by 29%. Adjustment of anisotonicity of the media without changing the NaCl concentration in the media had almost similar effects on proteolysis in the perfused liver. A direct correlation of cell volume changes or hydration status of liver cells with that of proteolysis was observed in the perfused liver regardless of whether the cell volume increase/decrease was evoked by anisotonic perfusion media or by the addition of amino acids. Thus, it appears that the increase/decrease in hepatic cell volume could be one of the important modulators for adjusting the autophagic proteolysis in walking catfish probably to avoid the adverse affects of osmotically induced cell volume changes, to preserve the hepatic cell function and for proper energy supply under osmotic stress. This is the first report of cell volume-sensitive changes of autophagic proteolysis in hepatic cells of any teleosts.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources