Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Feb;27(2):451-6.
doi: 10.1634/stemcells.2008-0390.

Brief report--human embryonic stem cell-derived mesenchymal progenitors possess strong immunosuppressive effects toward natural killer cells as well as T lymphocytes

Affiliations

Brief report--human embryonic stem cell-derived mesenchymal progenitors possess strong immunosuppressive effects toward natural killer cells as well as T lymphocytes

B Linju Yen et al. Stem Cells. 2009 Feb.

Abstract

The derivation of mesenchymal progenitors from human embryonic stem cells (hESCs) has recently been reported. We studied the immune characteristics of these hESC-derived mesenchymal progenitors (EMPs) and their interactions with T lymphocytes and natural killer cells (NKs), two populations of lymphocytes with important roles in transplantation immunology. EMPs express a number of bone marrow mesenchymal stromal cell (BMMSC) markers, as well as the hESC marker SSEA-4. Immunologically, EMPs do not express HLA-DR or costimulatory molecules. On the other hand, HLA-G, a nonclassic MHC I protein involved in mediating maternal-fetal tolerance, can be found on the surface of EMPs, and its expression is increased after interferon-gamma stimulation. EMPs can suppress CD4(+) or CD8(+) lymphocyte proliferation, similar to BMMSCs. However, EMPs are more resistant to NK-mediated lysis than BMMSCs and can suppress the cytotoxic effects of activated NKs, as well as downregulating the NK-activating receptors NKp30 and NKp46. With their broad immunosuppressive properties, EMPs may represent a new potential cell source for therapeutic use.

PubMed Disclaimer

Publication types

MeSH terms