Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov;3(11):654-9.
doi: 10.1038/nnano.2008.268. Epub 2008 Sep 21.

Current saturation in zero-bandgap, top-gated graphene field-effect transistors

Affiliations

Current saturation in zero-bandgap, top-gated graphene field-effect transistors

Inanc Meric et al. Nat Nanotechnol. 2008 Nov.

Abstract

The novel electronic properties of graphene, including a linear energy dispersion relation and purely two-dimensional structure, have led to intense research into possible applications of this material in nanoscale devices. Here we report the first observation of saturating transistor characteristics in a graphene field-effect transistor. The saturation velocity depends on the charge-carrier concentration and we attribute this to scattering by interfacial phonons in the SiO2 layer supporting the graphene channels. Unusual features in the current-voltage characteristic are explained by a field-effect model and diffusive carrier transport in the presence of a singular point in the density of states. The electrostatic modulation of the channel through an efficiently coupled top gate yields transconductances as high as 150 microS microm-1 despite low on-off current ratios. These results demonstrate the feasibility of two-dimensional graphene devices for analogue and radio-frequency circuit applications without the need for bandgap engineering.

PubMed Disclaimer

Publication types

LinkOut - more resources