Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec;4(12):2236-9.
doi: 10.1002/smll.200800655.

Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway

Affiliations

Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway

Orestis Faklaris et al. Small. 2008 Dec.

Abstract

Diamond nanoparticles are promising photoluminescent probes for tracking intracellular processes, due to embedded, perfectly photostable color centers. In this work, the spontaneous internalization of such nanoparticles (diameter 25 nm) in HeLa cancer cells is investigated by confocal microscopy and time-resolved techniques. Nanoparticles are observed inside the cell cytoplasm at the single-particle and single-color-center level, assessed by time-correlation intensity measurements. Improvement of the nanoparticle signal-to-noise ratio inside the cell is achieved using a pulsed-excitation laser and time-resolved detection taking advantage of the long radiative lifetime of the color-center excited state as compared to cell autofluorescence. The internalization pathways are also investigated, with endosomal marking and colocalization analyses. The low colocalization ratio observed proves that nanodiamonds are not trapped in endosomes, a promising result in prospect of drug delivery by these nanoparticles. Low cytotoxicity of these nanoparticles in this cell line is also shown.

PubMed Disclaimer

Publication types

LinkOut - more resources