Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jan 11;251(4990):204-7.
doi: 10.1126/science.1898993.

Signal transduction by interferon-alpha through arachidonic acid metabolism

Affiliations

Signal transduction by interferon-alpha through arachidonic acid metabolism

G E Hannigan et al. Science. .

Abstract

Molecular mechanisms that mediate signal transduction by growth inhibitory cytokines are poorly understood. Type I (alpha and beta) interferons (IFNs) are potent growth inhibitory cytokines whose biological activities depend on induced changes in gene expression. IFN-alpha induced the transient activation of phospholipase A2 in 3T3 fibroblasts and rapid hydrolysis of [3H]arachidonic acid (AA) from prelabeled phospholipid pools. The phospholipase inhibitor, bromophenacyl bromide (BPB), specifically blocked IFN-induced binding of nuclear factors to a conserved, IFN-regulated enhancer element, the interferon-stimulated response element (ISRE). BPB also caused a dose-dependent inhibition of IFN-alpha-induced ISRE-dependent transcription in transient transfection assays. Specific inhibition of AA oxygenation by eicosatetraynoic acid prevented IFN-alpha induction of factor binding to the ISRE. Treatment of intact cells with inhibitors of fatty acid cyclooxygenase or lipoxygenase enzymes resulted in amplification of IFN-alpha-induced ISRE binding and gene expression. Thus, IFN-alpha receptor-coupled AA hydrolysis may function in activation of latent transcription factors by IFN-alpha and provides a system for studying the role of AA metabolism in transduction of growth inhibitory signals.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources