Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 May;11(5):1107-22.
doi: 10.1089/ars.2008.2308.

Redox regulation and its emerging roles in stem cells and stem-like cancer cells

Affiliations
Review

Redox regulation and its emerging roles in stem cells and stem-like cancer cells

Marcia A Ogasawara et al. Antioxid Redox Signal. 2009 May.

Abstract

The existence of cancer stem cells has impelled the pursuit to understanding and characterizing this subset of cells, which are thought to be responsible for tumor recurrence and to contribute to therapy resistance. Recent studies suggest that cancer stem cells seem to possess properties similar to those of normal stem cells, revealing a possible therapeutic strategy/target. For this to be feasible, it is imperative to understand the relation between cancer cells, cancer stem cells, and normal stem cells. Cancer cells have been found to be in a state of redox imbalance, an alteration in the homeostasis between oxidants and antioxidants, resulting in increased oxidants within the cell. Studies have shown redox balance plays an important role in the maintenance of stem cell self-renewal and in differentiation. Very little is known about the redox status in cancer stem cells. In this review, we focus on the sites of oxidant generation and the regulation of redox status in cancer cells and stem cells. In addition, evidence that supports the involvement of redox homeostasis for stem cell self-renewal, differentiation, and survival are reviewed. Given the significance of redox in stem cells, we also discuss the possibility of exploiting the redox status in cancer stem cells as a novel therapeutic strategy.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources