Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Sep;27(1-3):165-73.
doi: 10.1023/A:1008060720608.

Mechanisms of resistance to alkylating agents

Affiliations

Mechanisms of resistance to alkylating agents

G Damia et al. Cytotechnology. 1998 Sep.

Abstract

Alkylating agents are the most widely used anticancer drugs whose main target is the DNA, although how exactly the DNA lesions cause cell death is still not clear. The emergence of resistance to this class of drugs as well as to other antitumor agents is one of the major causes of failure of cancer treatment. This paper reviews some of the best characterized mechanisms of resistance to alkylating agents. Pre- and post-target mechanisms are recognized, the former able to limit the formation of lethal DNA adducts, and the latter enabling the cell to repair or tolerate the damage. The role in the pre-target mechanisms of reduced drug accumulation and the increased detoxification or activation systems (such as DT-diaphorase, metallothionein, GST/GSH system, etc...) are discussed. In the post-target mechanisms the different DNA repair pathways, tolerance to alkylation damage and the 'downstream' effects (cell cycle arrest and/or apoptosis) are examined.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Anthoney DA, McIlwrath AJ, Gallagher WM, Edlin AR, Brown R. Microsatellite instability, apoptosis, and loss of p53 function in drug-resistant tumor cells. Cancer Res. 1996;56:1374–1381. - PubMed
    1. Armitage JO, Antman KH. High-dose cancer therapy: pharmacology, hematopoietins, stem cells. Ed. 2. Baltimore: Williams and Wilkins; 1995.
    1. Beith J, Hartley J, Darling J, Souhami R. DNA interstrand cross-linking and cytotoxicity induced by chloroethylnitrosoureas and cisplatin in human glioma cell lines which vary in cellular concentration of O6-alkylguanine-DNA alkyltransferase. Br J Cancer. 1997;75:500–505. - PMC - PubMed
    1. Belanich M, Pastor M, Randall T, Guerra D, Kibitel J, Alas L, Li B, Citron M, Wasserman P, White A, Eyre H, Jaeckle K, Schulman S, Rector D, Prados M, Coons S, Shapiro W, Yarosh D. Retrospective study of the correlation between the DNA repair protein alkyltransferase and survival of brain tumor patients treated with carmustine. Cancer Res. 1996;56:783–788. - PubMed
    1. Bodell WJ, Tokuda K, Ludlum DB. Differences in DNA alkylation products formed in sensitive and resistant human glioma cells treated with N-(2-chloroethyl)-N-nitrosourea. Cancer Res. 1988;48:4489–4492. - PubMed