Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar;41(2-3):133-8.
doi: 10.1023/A:1024874706356.

What is the future for cord blood stem cells?

Affiliations

What is the future for cord blood stem cells?

E A de Wynter. Cytotechnology. 2003 Mar.

Abstract

Stem and progenitor cells are present in cord blood at a high frequency making these cells a major target population for experimental and clinical studies. Over the past decade there has been considerable developments in cord blood research and transplantation but despite the rapid progress many problems remain. The initial hope that cord blood would be an alternative source of haemopoietic cells for transplantation has been tempered by the fact that there are insufficient cells in most cord blood collections to engraft an adult of average weight. In attempts to increase the cell number, a plethora of techniques for ex-vivo expansion have been developed.These techniques have also proved useful for gene therapy. As cord blood cells possess unique properties this allows them to be utilised as suitable vehicles for gene therapy and long-term engraftment of transduced cells has been achieved. Current work examining the nature of the stem cells present in this haematological source indicates that cord blood contains not only haemopoietic stem cells but also primitive non-haemopoietic cells with high proliferative and developmental potential. As attention focuses on stem cell biology and the controversies surrounding the potential use of embryonic stem cells in treatment of disease, the properties of stem cells from other sources including cord blood are being re-appraised. The purpose of this article is to review some of the current areas of work and highlight biological problems associated with the use of cord blood cells.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Abonour R, Williams DA, Einhorn L, Hall KM, Chen J, Coffman J, Traycoff CM, Bank A, Kato I, Ward M, Williams SD, Hromas R, Robertson MJ, Smith FO, Woo D, Mills B, Srour EF, Cornetta K. Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells. Nat Med. 2000;6:652–658. doi: 10.1038/76225. - DOI - PubMed
    1. Barquinero J, Segovia JC, Ramírez M, Limón A, Güenechea G, Puig T, Briones J, García J, Bueren JA. Efficient transduction of human hematopoietic repopulating cells generating stable engraftment of transgene-expressing cells in NOD/SCID mice. Blood. 2000;95:3085–3093. - PubMed
    1. Bertolini F, Battaglia M, Pedrazzoli P, Da Prada GA, Lanza A, Soligo D, Caneva L, Sarina B, Murphy S, Thomas T, della Cuna GR. Megakaryocytic progenitors can be generated ex vivo and safely administered to autologous peripheral blood progenitor cell transplant recipients. Blood. 1997;89:2679–2688. - PubMed
    1. Borras FE, Matthews NC, Patel R, Navarette C. Dendritic cells can be successfully generated from CD34+ cord blood cells in the presence of autologous cord blood plasma. Bone Marrow Transplant. 2000;26:371–376. doi: 10.1038/sj.bmt.1702525. - DOI - PubMed
    1. Briddell RA, Kern BP, Zilm KL, Stoney GB, McNiece IK. Purification of CD34+ cells is essential for optimal ex vivo expansion of umbilical cord blood cells. J Hematother. 1997;6:145–150. - PubMed