Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan;47(1-3):19-27.
doi: 10.1007/s10616-005-3752-9.

Effect of Subcultivation of Human Bone Marrow Mesenchymal Stem on their Capacities for Chondrogenesis, Supporting Hematopoiesis, and Telomea Length

Affiliations

Effect of Subcultivation of Human Bone Marrow Mesenchymal Stem on their Capacities for Chondrogenesis, Supporting Hematopoiesis, and Telomea Length

Masaki Nakahara et al. Cytotechnology. 2005 Jan.

Abstract

Effects of subcultivation of human bone marrow mesenchymal stem cells on their capacities for chondrogenesis and supporting hematopoiesis, and telomea length were investigated. Mesenchymal stem cells were isolated from human bone marrow aspirates and subcultivated several times at 37 degrees C under a 5% CO(2) atmosphere employing DMEM medium containing 10% FCS up to the 20th population doubling level (PDL). The ratio of CD45(-) CD105(+) cells among these cells slightly increased as PDL increased. However, there was no marked change in the chondrogenic capacity of these cells, which was confirmed by expression assay of aggrecan mRNA and Safranin O staining after pellet cell cultivation. The change in capacity to support hematopoiesis of cord blood cells was not observed among cells with various PDLs. On the other hand, telomere length markedly decreased as PDL increased at a higher rate than that at which telomere length of primary mesenchymal stem cells decreased as the age of donor increased.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Akiyama M., Hoshi Y., Sakurai S., Yamada H., Yamada O., Mizoguchi H. Changes of telomere length in children after hematopoietic stem cell transplantation. Bone Marrow Transplant. 1998a;21(2):167–171. doi: 10.1038/sj.bmt.1701060. - DOI - PubMed
    1. Akiyama M., Uchiyama H., Hoshi Y., Yano S., Asai O., Kuraishi Y., Yamada O., Mizoguchi H., Yamada H. Changes of telomere length after hematopoietic stem cell transplantation. Exp. Hematol. 1998b;26(8):359–365.
    1. Allsopp R.C., Vaziri H., Patterson C., Goldstein S., Younglai E.V., Futcher A.B., Greider C.W., Harley C.B. Telomere length predicts replicative capacity of human fibroblasts. PNAS USA. 1992;89(21):10114–10118. - PMC - PubMed
    1. Banfi A., Muraglia A., Dozin B., Mastrogiacomo M., Cancedda R., Quarto R. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp. Hematol. 2000;28:707–715. doi: 10.1016/S0301-472X(00)00160-0. - DOI - PubMed
    1. Barry F.P., Boynton R.E., Haynesworth S., Murphy J.M., Zaia J. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105) Biochem. Biophys. Res. Commun. 1999;265:134–139. doi: 10.1006/bbrc.1999.1620. - DOI - PubMed