Insect cells respiratory activity in bioreactor
- PMID: 19003170
- PMCID: PMC2553646
- DOI: 10.1007/s10616-007-9118-8
Insect cells respiratory activity in bioreactor
Abstract
Specific respiration rate ( [Formula: see text]) is a key parameter to understand cell metabolism and physiological state, providing useful information for process supervision and control. In this work, we cultivated different insect cells in a very controlled environment, being able to measure [Formula: see text]. Spodoptera frugiperda (Sf9) cells have been used through virus infection as host for foreign protein expression and bioinsecticide production. Transfected Drosophila melanogaster (S2) cells can be used to produce different proteins. The objective of this work is to investigate respiratory activity and oxygen transfer during the growth of different insect cells lines as Spodoptera frugiperda (Sf9), Drosophila melanogaster (S2) wild and transfected for the expression of GPV and EGFP. All experiments were performed in a well-controlled 1-L bioreactor, with SF900II serum free medium. Spodoptera frugiperda (Sf9) cells reached 10.7 x 10(6) cells/mL and maximum specific respiration rate ([Formula: see text]) of 7.3 x 10(-17) molO(2)/cell s. Drosophila melanogaster (S2) cells achieved 51.2 x 10(6) cells/mL and [Formula: see text] of 3.1 x 10(-18) molO(2)/cell s. S2AcGPV (expressing with rabies virus glycoprotein) reached 24.9 x 10(6) cells/mL and [Formula: see text] of 1.7 x 10(-17) molO(2)/cell s, while S2MtEGFP (expressing green fluorescent protein) achieved 15.5 x 10(6) cells/mL and [Formula: see text] = 1.9 x 10(-17) molO(2)/cell s. Relating to the Sf9, S2 cells reached higher maximum cell concentrations and lower specific respiration rate, which can be explained by its smaller size. These results presented useful information for scale-up and process control of insect cells.
Figures








Similar articles
-
Insect cell entrapment, growth and recovering using a single-use fixed-bed bioreactor. Scaling up and recombinant protein production.J Biotechnol. 2015 Dec 20;216:110-5. doi: 10.1016/j.jbiotec.2015.10.013. Epub 2015 Oct 23. J Biotechnol. 2015. PMID: 26481831
-
DROSOPHILA S2 cell culture in a WAVE Bioreactor: potential for scaling up the production of the recombinant rabies virus glycoprotein.Appl Microbiol Biotechnol. 2018 Jun;102(11):4773-4783. doi: 10.1007/s00253-018-8962-0. Epub 2018 Apr 19. Appl Microbiol Biotechnol. 2018. PMID: 29675803
-
Development of an animal-derived component-free medium for Spodoptera frugiperda (Sf9) cells using response surface methodology.Biotechnol Lett. 2023 Jul;45(7):761-777. doi: 10.1007/s10529-023-03389-5. Epub 2023 May 15. Biotechnol Lett. 2023. PMID: 37184749
-
Bioreactor culture of recombinant Drosophila melanogaster S2 cells: characterization of metabolic features related to cell growth and production of the rabies virus glycoprotein.Cytotechnology. 2008 May;57(1):61-6. doi: 10.1007/s10616-008-9130-7. Epub 2008 Feb 19. Cytotechnology. 2008. PMID: 19003173 Free PMC article.
-
Single-cell cloning enables the selection of more productive Drosophila melanogaster S2 cells for recombinant protein expression.Biotechnol Rep (Amst). 2018 Jul 3;19:e00272. doi: 10.1016/j.btre.2018.e00272. eCollection 2018 Sep. Biotechnol Rep (Amst). 2018. PMID: 29998071 Free PMC article.
Cited by
-
FAS2FURIOUS: Moderate-Throughput Secreted Expression of Difficult Recombinant Proteins in Drosophila S2 Cells.Front Bioeng Biotechnol. 2022 May 5;10:871933. doi: 10.3389/fbioe.2022.871933. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 35600892 Free PMC article.
-
Entomoculture: A Preliminary Techno-Economic Assessment.Foods. 2022 Sep 30;11(19):3037. doi: 10.3390/foods11193037. Foods. 2022. PMID: 36230118 Free PMC article.
References
-
- None
- Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals, 2nd edn. McGraw-Hill, New York, pp 459–469
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.jbiotec.2004.12.008', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.jbiotec.2004.12.008'}, {'type': 'PubMed', 'value': '15748762', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15748762/'}]}
- Chang KH, Yang JM, Chum HOK, Chung IS (2005) Enhance activity of recombinant of β-secretase from Drosophila melanogaster S2 cells transformed with cDNAs encoding human β1,4-galactosytransferase and Gal β1,4-GlcNac α2,6-sialytransferase. J Biotechnol 116:359–367 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0166-0934(99)00021-X', 'is_inner': False, 'url': 'https://doi.org/10.1016/s0166-0934(99)00021-x'}, {'type': 'PubMed', 'value': '10381089', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10381089/'}]}
- Delm L, Wolf H, Wagner R (1999) High level expression of hepatitis B virus surface antigen in stably transfected in Drosophila Shneider-2 cells. J Virol Methods 79:191–203 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/(SICI)1097-0290(19960405)50:1<36::AID-BIT5>3.0.CO;2-2', 'is_inner': False, 'url': 'https://doi.org/10.1002/(sici)1097-0290(19960405)50:1<36::aid-bit5>3.0.co;2-2'}, {'type': 'PubMed', 'value': '18626897', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/18626897/'}]}
- Kamen AA, Berdad C, Tom R, Perret S, Jardin B (1996) On-line monitoring of respiration in recombinant-baculovirus infected and uninfected insect cell bioreactor cultures. Biotechnol Bioeng 50:36–48 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/0168-1656(94)00128-Y', 'is_inner': False, 'url': 'https://doi.org/10.1016/0168-1656(94)00128-y'}, {'type': 'PubMed', 'value': '7765874', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/7765874/'}]}
- Kioukia N, Nienow AW, Emery AN, Albureai M (1995) Physiological and environmental-factors affecting the growth of insect cells and infection with baculovirus. J Biotechnol 38:243–251 - PubMed
LinkOut - more resources
Full Text Sources