Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jul;30(1-3):211-26.
doi: 10.1023/A:1008041420166.

Embryonic stem cell differentiation models: cardiogenesis, myogenesis, neurogenesis, epithelial and vascular smooth muscle cell differentiation in vitro

Affiliations

Embryonic stem cell differentiation models: cardiogenesis, myogenesis, neurogenesis, epithelial and vascular smooth muscle cell differentiation in vitro

K Guan et al. Cytotechnology. 1999 Jul.

Abstract

Embryonic stem cells, totipotent cells of the early mouse embryo, were established as permanent cell lines of undifferentiated cells. ES cells provide an important cellular system in developmental biology for the manipulation of preselected genes in mice by using the gene targeting technology. Embryonic stem cells, when cultivated as embryo-like aggregates, so-called 'embryoid bodies', are able to differentiate in vitro into derivatives of all three primary germ layers, the endoderm, ectoderm and mesoderm. We established differentiation protocols for the in vitro development of undifferentiated embryonic stem cells into differentiated cardiomyocytes, skeletal muscle, neuronal, epithelial and vascular smooth muscle cells. During differentiation, tissue-specific genes, proteins, ion channels, receptors and action potentials were expressed in a developmentally controlled pattern. This pattern closely recapitulates the developmental pattern during embryogenesis in the living organism. In vitro, the controlled developmental pattern was found to be influenced by differentiation and growth factor molecules or by xenobiotics. Furthermore, the differentiation system has been used for genetic analyses by 'gain of function' and 'loss of function' approaches in vitro.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Bagutti C, Wobus AM, Fässler R, Watt FM. Differentiation of embryonal stem cells into keratinocytes: Comparison of wild-type and β1 integrin-deficient cells. Dev Biol. 1996;179:184–196. doi: 10.1006/dbio.1996.0250. - DOI - PubMed
    1. Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI. Embryonic stem cells express neuronal properties in vitro. Dev Biol. 1995;168:342–357. doi: 10.1006/dbio.1995.1085. - DOI - PubMed
    1. Blank RS, Swartz EA, Thompson MM, Olson EN, Owens GK. A retinoic acid-induced clonal cell line derived from multipotential P19 embryonal carcinoma cells expresses smooth muscle characteristics. Circ Res. 1995;76:742–749. - PubMed
    1. Boudjelal M, Taneja R, Matsubara S, Bouillet P, Dolle P, Chambon P. Overexpression of Stra13, a novel retinoic acid-inducible gene of the basic helix-loop-helix family, inhibits mesodermal and promotes neuronal differentiation of P19 cells. Genes Dev. 1997;11:2052–2065. - PMC - PubMed
    1. Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature. 1984;309:255–256. doi: 10.1038/309255a0. - DOI - PubMed