A destabilized bacterial luciferase for dynamic gene expression studies
- PMID: 19003433
- PMCID: PMC2533149
- DOI: 10.1007/s11693-006-9001-5
A destabilized bacterial luciferase for dynamic gene expression studies
Abstract
Fusions of genetic regulatory elements with reporter genes have long been used as tools for monitoring gene expression and have become a major component in synthetic gene circuit implementation. A major limitation of many of these systems is the relatively long half-life of the reporter protein(s), which prevents monitoring both the initiation and the termination of transcription in real-time. Furthermore, when used as components in synthetic gene circuits, the long time constants associated with reporter protein decay may significantly degrade circuit performance. In this study, short half-life variants of LuxA and LuxB from Photorhabdus luminescens were constructed in Escherichia coli by inclusion of an 11-amino acid carboxy-terminal tag that is recognized by endogenous tail-specific proteases. Results indicated that the addition of the C-terminal tag affected the functional half-life of the holoenzyme when the tag was added to luxA or to both luxA and luxB, but modification of luxB alone did not have a significant effect. In addition, it was also found that alteration of the terminal three amino acid residues of the carboxy-terminal tag fused to LuxA generated variants with half-lives of intermediate length in a manner similar to that reported for GFP. This report is the first instance of the C-terminal tagging approach for the regulation of protein half-life to be applied to an enzyme or monomer of a multi-subunit enzyme complex and will extend the utility of the bacterial luciferase reporter genes for the monitoring of dynamic changes in gene expression.
Figures


Similar articles
-
luxA Gene From Enhygromyxa salina Encodes a Functional Homodimeric Luciferase.Proteins. 2024 Dec;92(12):1449-1458. doi: 10.1002/prot.26739. Epub 2024 Aug 22. Proteins. 2024. PMID: 39171358
-
Fusion of LuxA and LuxB and its expression in E. coli, S. cerevisiae and D. melanogaster.J Biolumin Chemilumin. 1990 Apr-Jun;5(2):89-97. doi: 10.1002/bio.1170050204. J Biolumin Chemilumin. 1990. PMID: 2110714
-
Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases.Biochemistry. 1999 Oct 19;38(42):13820-8. doi: 10.1021/bi991407n. Biochemistry. 1999. PMID: 10529227
-
Coexpression of luxA and luxB genes of Vibrio fischeri in NIH3T3 mammalian cells and evaluation of its bioluminescence activities.Luminescence. 2014 Feb;29(1):13-9. doi: 10.1002/bio.2468. Epub 2013 Apr 25. Luminescence. 2014. PMID: 23616465
-
Biochemistry and genetics of bacterial bioluminescence.Adv Biochem Eng Biotechnol. 2014;144:37-64. doi: 10.1007/978-3-662-43385-0_2. Adv Biochem Eng Biotechnol. 2014. PMID: 25084994 Review.
Cited by
-
Expanding the genetic toolbox for the obligate human pathogen Streptococcus pyogenes.Front Bioeng Biotechnol. 2024 Jun 7;12:1395659. doi: 10.3389/fbioe.2024.1395659. eCollection 2024. Front Bioeng Biotechnol. 2024. PMID: 38911550 Free PMC article.
-
Reporter proteins in whole-cell optical bioreporter detection systems, biosensor integrations, and biosensing applications.Sensors (Basel). 2009;9(11):9147-74. doi: 10.3390/s91109147. Epub 2009 Nov 17. Sensors (Basel). 2009. PMID: 22291559 Free PMC article.
-
Lipid-mediated delivery of RNA is more efficient than delivery of DNA in non-dividing cells.Int J Pharm. 2010 Apr 15;389(1-2):232-43. doi: 10.1016/j.ijpharm.2010.01.019. Epub 2010 Jan 18. Int J Pharm. 2010. PMID: 20080162 Free PMC article.
-
Reconstructing promoter activity from Lux bioluminescent reporters.PLoS Comput Biol. 2017 Sep 18;13(9):e1005731. doi: 10.1371/journal.pcbi.1005731. eCollection 2017 Sep. PLoS Comput Biol. 2017. PMID: 28922354 Free PMC article.
-
A set of synthetic versatile genetic control elements for the efficient expression of genes in Actinobacteria.Sci Rep. 2018 Jan 11;8(1):491. doi: 10.1038/s41598-017-18846-1. Sci Rep. 2018. PMID: 29323285 Free PMC article.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC106306', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC106306/'}, {'type': 'PubMed', 'value': '9603842', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/9603842/'}]}
- Andersen J, Sternberg C, Poulsen L, Bjørn SP, Givskov M, Molin S (1998) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–2246 - PMC - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1126/science.8303295', 'is_inner': False, 'url': 'https://doi.org/10.1126/science.8303295'}, {'type': 'PubMed', 'value': '8303295', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/8303295/'}]}
- Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/0378-1119(95)00685-0', 'is_inner': False, 'url': 'https://doi.org/10.1016/0378-1119(95)00685-0'}, {'type': 'PubMed', 'value': '8707053', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/8707053/'}]}
- Cormack B, Valdivia R, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/BF00114598', 'is_inner': False, 'url': 'https://doi.org/10.1007/bf00114598'}, {'type': 'PubMed', 'value': '1368156', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/1368156/'}]}
- DiGrazia P, King J, Blackburn J, Applegate B, Bienkowski P, Hilton B, Sayler G (1991) Dynamic response of naphthalene biodegradation in a continuous flow soil slurry reactor. Biodegradation 2:81–91 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1111/j.1462-5822.2004.00378.x', 'is_inner': False, 'url': 'https://doi.org/10.1111/j.1462-5822.2004.00378.x'}, {'type': 'PubMed', 'value': '15009023', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15009023/'}]}
- Doyle TC, Burns SM, Contag CH (2004) In vivo bioluminescence imaging for integrated studies of infection. Cell Microbiol 6:303–317 - PubMed
LinkOut - more resources
Full Text Sources