A destabilized bacterial luciferase for dynamic gene expression studies
- PMID: 19003433
- PMCID: PMC2533149
- DOI: 10.1007/s11693-006-9001-5
A destabilized bacterial luciferase for dynamic gene expression studies
Abstract
Fusions of genetic regulatory elements with reporter genes have long been used as tools for monitoring gene expression and have become a major component in synthetic gene circuit implementation. A major limitation of many of these systems is the relatively long half-life of the reporter protein(s), which prevents monitoring both the initiation and the termination of transcription in real-time. Furthermore, when used as components in synthetic gene circuits, the long time constants associated with reporter protein decay may significantly degrade circuit performance. In this study, short half-life variants of LuxA and LuxB from Photorhabdus luminescens were constructed in Escherichia coli by inclusion of an 11-amino acid carboxy-terminal tag that is recognized by endogenous tail-specific proteases. Results indicated that the addition of the C-terminal tag affected the functional half-life of the holoenzyme when the tag was added to luxA or to both luxA and luxB, but modification of luxB alone did not have a significant effect. In addition, it was also found that alteration of the terminal three amino acid residues of the carboxy-terminal tag fused to LuxA generated variants with half-lives of intermediate length in a manner similar to that reported for GFP. This report is the first instance of the C-terminal tagging approach for the regulation of protein half-life to be applied to an enzyme or monomer of a multi-subunit enzyme complex and will extend the utility of the bacterial luciferase reporter genes for the monitoring of dynamic changes in gene expression.
Figures


References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC106306', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC106306/'}, {'type': 'PubMed', 'value': '9603842', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/9603842/'}]}
- Andersen J, Sternberg C, Poulsen L, Bjørn SP, Givskov M, Molin S (1998) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–2246 - PMC - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1126/science.8303295', 'is_inner': False, 'url': 'https://doi.org/10.1126/science.8303295'}, {'type': 'PubMed', 'value': '8303295', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/8303295/'}]}
- Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/0378-1119(95)00685-0', 'is_inner': False, 'url': 'https://doi.org/10.1016/0378-1119(95)00685-0'}, {'type': 'PubMed', 'value': '8707053', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/8707053/'}]}
- Cormack B, Valdivia R, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/BF00114598', 'is_inner': False, 'url': 'https://doi.org/10.1007/bf00114598'}, {'type': 'PubMed', 'value': '1368156', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/1368156/'}]}
- DiGrazia P, King J, Blackburn J, Applegate B, Bienkowski P, Hilton B, Sayler G (1991) Dynamic response of naphthalene biodegradation in a continuous flow soil slurry reactor. Biodegradation 2:81–91 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1111/j.1462-5822.2004.00378.x', 'is_inner': False, 'url': 'https://doi.org/10.1111/j.1462-5822.2004.00378.x'}, {'type': 'PubMed', 'value': '15009023', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15009023/'}]}
- Doyle TC, Burns SM, Contag CH (2004) In vivo bioluminescence imaging for integrated studies of infection. Cell Microbiol 6:303–317 - PubMed
LinkOut - more resources
Full Text Sources