Consciousness related neural events viewed as brain state space transitions
- PMID: 19003465
- PMCID: PMC2645498
- DOI: 10.1007/s11571-008-9040-6
Consciousness related neural events viewed as brain state space transitions
Abstract
This theoretical and speculative essay addresses a categorical distinction between neural events of sensory-motor cognition and those presumably associated with consciousness. It proposes to view this distinction in the framework of the branch of Statistical Physics currently referred to as Modern Critical Theory (Stanley, Introduction to phase transitions and critical phenomena, 1987; Marro and Dickman, Nonequilibrium phase transitions in lattice, 1999). Based on established landmarks of brain dynamics, network configurations and their role for conveying oscillatory activity of certain frequencies bands, the question is examined: what kind of state space transitions can systems with these properties undergo, and could the relation between neural processes of sensory-motor cognition and those of events in consciousness be of the same category as is characterized by state transitions in non-equilibrium physical systems? Approaches for empirical validation of this view by suitably designed brain imaging studies, and for computational simulations of the proposed principle are discussed.
Similar articles
-
Viewing brain processes as Critical State Transitions across levels of organization: Neural events in Cognition and Consciousness, and general principles.Biosystems. 2009 Apr;96(1):114-9. doi: 10.1016/j.biosystems.2008.11.011. Epub 2008 Dec 11. Biosystems. 2009. PMID: 19124060
-
Mechanisms of hysteresis in human brain networks during transitions of consciousness and unconsciousness: Theoretical principles and empirical evidence.PLoS Comput Biol. 2018 Aug 30;14(8):e1006424. doi: 10.1371/journal.pcbi.1006424. eCollection 2018 Aug. PLoS Comput Biol. 2018. PMID: 30161118 Free PMC article.
-
Consciousness, biology and quantum hypotheses.Phys Life Rev. 2012 Sep;9(3):285-94. doi: 10.1016/j.plrev.2012.07.001. Epub 2012 Jul 10. Phys Life Rev. 2012. PMID: 22925839 Review.
-
[Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].Encephale. 2001 May-Jun;27(3):260-8. Encephale. 2001. PMID: 11488256 French.
-
Quantum physics in neuroscience and psychology: a neurophysical model of mind-brain interaction.Philos Trans R Soc Lond B Biol Sci. 2005 Jun 29;360(1458):1309-27. doi: 10.1098/rstb.2004.1598. Philos Trans R Soc Lond B Biol Sci. 2005. PMID: 16147524 Free PMC article. Review.
Cited by
-
Critical Changes in Cortical Neuronal Interactions in Anesthetized and Awake Rats.Anesthesiology. 2015 Jul;123(1):171-80. doi: 10.1097/ALN.0000000000000690. Anesthesiology. 2015. PMID: 25955982 Free PMC article.
-
Precisely timed oculomotor and parietal EEG activity in perceptual switching.Cogn Neurodyn. 2011 Nov;5(4):399-409. doi: 10.1007/s11571-011-9168-7. Epub 2011 Aug 23. Cogn Neurodyn. 2011. PMID: 22184506 Free PMC article.
-
Fractals in the nervous system: conceptual implications for theoretical neuroscience.Front Physiol. 2010 Jul 6;1:15. doi: 10.3389/fphys.2010.00015. eCollection 2010. Front Physiol. 2010. PMID: 21423358 Free PMC article.
-
From brain states to mental phenomena via phase space transitions and renormalization group transformation: proposal of a theory.Cogn Neurodyn. 2012 Apr;6(2):199-202. doi: 10.1007/s11571-011-9187-4. Epub 2012 Jan 4. Cogn Neurodyn. 2012. PMID: 23544037 Free PMC article. No abstract available.
-
Estimating causal interaction between prefrontal cortex and striatum by transfer entropy.Cogn Neurodyn. 2013 Jun;7(3):253-61. doi: 10.1007/s11571-012-9239-4. Epub 2013 Jan 4. Cogn Neurodyn. 2013. PMID: 24427205 Free PMC article.
References
-
- None
- Acebron JA, Bonilla LL, Perez Vincente CJ, Ritort F, Spigler R (2005) The Kuramoto Model: simple paradigm for synchronization phenomena. Rev Mod Phys 77:137–185
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC6674299', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC6674299/'}, {'type': 'PubMed', 'value': '16399673', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/16399673/'}]}
- Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low frequency, small-world human brain functional networks with highly connected association cortical hubs. J Neurosci 26:63–72 - PMC - PubMed
-
- None
- Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC17168', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC17168/'}, {'type': 'PubMed', 'value': '11005838', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11005838/'}]}
- Amaral LAN, Scala A, Barthelemy M, Stanley HE (2000) Classes of small world networks. Proc Natl Acad USA 97:11149–11152 - PMC - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11025280', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11025280/'}]}
- Atkinson AP, Thomas MSC, Cleeremans A (2000) Consciousness: mapping the theoretical landscape. Trends Cogn Sci 4:372–382 - PubMed
LinkOut - more resources
Full Text Sources