Topography, independent component analysis and dipole source analysis of movement related potentials
- PMID: 19003503
- PMCID: PMC2289049
- DOI: 10.1007/s11571-007-9024-y
Topography, independent component analysis and dipole source analysis of movement related potentials
Abstract
The objective of this study was to test, in single subjects, the hypothesis that the signs of voluntary movement-related neural activity would first appear in the prefrontal region, then move to both the medial frontal and posterior parietal regions, progress to the medial primary motor area, lateralize to the contralateral primary motor area and finally involve the cerebellum (where feedback-initiated error signals are computed). Six subjects performed voluntary finger movements while DC coupled EEG was recorded from 64 scalp electrodes. Event-related potentials (ERPs) averaged on the movements were analysed both before and after independent component analysis (ICA) combined with dipole source analysis (DSA) of the independent components. Both a simple topographic analysis of undecomposed ERPs and the ICA/DSA analysis suggested that the original hypothesis was inadequate. The major departure from its predictions was that, while activity over many brain regions did appear at the expected times, it also appeared at unexpected times. Overall, the results suggest that the neuroscientific 'standard model', in which neural activity occurs sequentially in a series of discrete local areas each specialized for a particular function, may reflect the true situation less well than models in which large areas of brain shift simultaneously into and out of common activity states.
Figures








Similar articles
-
Sources of movement-related cortical potentials derived from foot, finger, and mouth movements.J Clin Neurophysiol. 1999 Jul;16(4):361-72. doi: 10.1097/00004691-199907000-00009. J Clin Neurophysiol. 1999. PMID: 10478709
-
Cortical potentials following voluntary and passive finger movements.Electroencephalogr Clin Neurophysiol. 1980 Nov;50(3-4):201-13. doi: 10.1016/0013-4694(80)90147-9. Electroencephalogr Clin Neurophysiol. 1980. PMID: 6160961
-
Independent Component Analysis of Gait-Related Movement Artifact Recorded using EEG Electrodes during Treadmill Walking.Front Hum Neurosci. 2015 Dec 1;9:639. doi: 10.3389/fnhum.2015.00639. eCollection 2015. Front Hum Neurosci. 2015. PMID: 26648858 Free PMC article.
-
Brain generators of laser-evoked potentials: from dipoles to functional significance.Neurophysiol Clin. 2003 Dec;33(6):279-92. doi: 10.1016/j.neucli.2003.10.008. Neurophysiol Clin. 2003. PMID: 14678842 Review.
-
Information-based modeling of event-related brain dynamics.Prog Brain Res. 2006;159:99-120. doi: 10.1016/S0079-6123(06)59007-7. Prog Brain Res. 2006. PMID: 17071226 Review.
Cited by
-
Emergence in the central nervous system.Cogn Neurodyn. 2013 Jun;7(3):173-95. doi: 10.1007/s11571-012-9229-6. Epub 2012 Nov 28. Cogn Neurodyn. 2013. PMID: 24427200 Free PMC article.
-
A review of EEG and MEG for brainnetome research.Cogn Neurodyn. 2014 Apr;8(2):87-98. doi: 10.1007/s11571-013-9274-9. Epub 2013 Nov 22. Cogn Neurodyn. 2014. PMID: 24624229 Free PMC article. Review.
-
Feature extraction and recognition of epileptiform activity in EEG by combining PCA with ApEn.Cogn Neurodyn. 2010 Sep;4(3):233-40. doi: 10.1007/s11571-010-9120-2. Epub 2010 Jun 26. Cogn Neurodyn. 2010. PMID: 21886676 Free PMC article.
-
Single-trial detection for intraoperative somatosensory evoked potentials monitoring.Cogn Neurodyn. 2015 Dec;9(6):589-601. doi: 10.1007/s11571-015-9348-y. Epub 2015 Jul 23. Cogn Neurodyn. 2015. PMID: 26557929 Free PMC article.
-
Answering six questions in extracting children's mismatch negativity through combining wavelet decomposition and independent component analysis.Cogn Neurodyn. 2011 Nov;5(4):343-59. doi: 10.1007/s11571-011-9161-1. Epub 2011 Jun 28. Cogn Neurodyn. 2011. PMID: 23115592 Free PMC article.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1146/annurev.neuro.25.112701.142922', 'is_inner': False, 'url': 'https://doi.org/10.1146/annurev.neuro.25.112701.142922'}, {'type': 'PubMed', 'value': '12052908', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12052908/'}]}
- Andersen RA, Buneo CA (2002) Intentional maps in posterior parietal cortex. Ann Rev Neurosci 25:189–220 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1103/PhysRevLett.59.381', 'is_inner': False, 'url': 'https://doi.org/10.1103/physrevlett.59.381'}, {'type': 'PubMed', 'value': '10035754', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10035754/'}]}
- Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of 1/f noise. Phys Rev Lett 59:381–384 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1177/1073858406293182', 'is_inner': False, 'url': 'https://doi.org/10.1177/1073858406293182'}, {'type': 'PubMed', 'value': '17079517', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/17079517/'}]}
- Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12:512–531 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1073/pnas.0606005103', 'is_inner': False, 'url': 'https://doi.org/10.1073/pnas.0606005103'}, {'type': 'PMC', 'value': 'PMC1838565', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC1838565/'}, {'type': 'PubMed', 'value': '17159150', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/17159150/'}]}
- Bassett DS, Meyer-Lindenberg A, Achard S et al (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci USA 103:19518–19523 - PMC - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC6793407', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC6793407/'}, {'type': 'PubMed', 'value': '9412519', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/9412519/'}]}
- Bechara A, Damasio H, Tranel D, Anderson S (1998) Dissociation of working memory from decision making within human prefrontal cortex. J Neurosci 18:428–437 - PMC - PubMed