Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009 Mar;103(3):463-70.
doi: 10.1016/j.rmed.2008.09.020. Epub 2008 Nov 9.

Inhaled IL-10 reduces biotrauma and mortality in a model of ventilator-induced lung injury

Affiliations
Free article
Comparative Study

Inhaled IL-10 reduces biotrauma and mortality in a model of ventilator-induced lung injury

Sandra Hoegl et al. Respir Med. 2009 Mar.
Free article

Abstract

Background: High-pressure ventilation induces barotrauma and pulmonary inflammation, thus leading to ventilator-induced lung injury (VILI). By limiting the pulmonal inflammation cascade the anti-inflammatory cytokine interleukin (IL)-10 may have protective effects. Via inhalation, IL-10 reaches the pulmonary system directly and in high concentrations.

Methods: Thirty six male, anesthetized and mechanically ventilated Sprague-Dawley rats were randomly assigned to the following groups (n=9, each): SHAM: pressure controlled ventilation with p(max)=20cmH(2)O, PEEP=4; VILI: ventilator settings were changed for 20min to p(max)=45cmH(2)O, PEEP=0; IL-10(high): inhalation of 10microg/kg IL-10 prior to induction of VILI; and IL-10(low): inhalation of 1microg/kg IL-10 prior to induction of VILI. All groups were ventilated and observed for 4h.

Results: High-pressure ventilation increased the concentrations of macrophage inflammatory protein (MIP)-2 and IL-1beta in bronchoalveolar lavage fluid (BALF) and plasma. This effect was reduced by the inhalation of IL-10 (10microg/kg). Additionally, IL-10 increased the animal survival time (78% vs. 22% 4-h mortality rate) and reduced NO-release from ex vivo cultured alveolar macrophages. Moreover, VILI-induced pulmonary heat shock protein-70 expression was reduced by IL-10 aerosol in a dose-dependent manner. Similarly, the activation of matrix metalloproteinase (MMP)-9 in BALF was reduced dose-dependently by IL-10. IL-10-treated animals showed a lower macroscopic lung injury score and less impairment of lung integrity and gas exchange.

Conclusions: Prophylactic inhalation of IL-10 improved survival and reduced lung injury in experimental VILI. Results indicate that this effect may be mediated by the inhibition of stress-induced inflammation and pulmonary biotrauma.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources