The superlattice model of lateral organization of membranes and its implications on membrane lipid homeostasis
- PMID: 19007747
- DOI: 10.1016/j.bbamem.2008.10.004
The superlattice model of lateral organization of membranes and its implications on membrane lipid homeostasis
Abstract
Most biological membranes are extremely complex structures consisting of hundreds of different lipid and protein molecules. According to the famous fluid-mosaic model lipids and many proteins are free to diffuse very rapidly in the plane of the membrane. While such fast diffusion implies that different membrane lipids would be laterally randomly distributed, accumulating evidence indicates that in model and natural membranes the lipid components tend to adopt regular (superlattice-like) distributions. The superlattice model, put forward based on such evidence, is intriguing because it predicts that 1) there is a limited number of allowed compositions representing local minima in membrane free energy and 2) those energy minima could provide set-points for enzymes regulating membrane lipid compositions. Furthermore, the existence of a discrete number of allowed compositions could help to maintain organelle identity in the face of rapid inter-organelle membrane traffic.
Similar articles
-
Lateral organisation of membrane lipids. The superlattice view.Biochim Biophys Acta. 1999 Aug 25;1440(1):32-48. doi: 10.1016/s1388-1981(99)00106-7. Biochim Biophys Acta. 1999. PMID: 10477823 Review.
-
The Fluid-Mosaic Model of Membrane Structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years.Biochim Biophys Acta. 2014 Jun;1838(6):1451-66. doi: 10.1016/j.bbamem.2013.10.019. Epub 2013 Nov 1. Biochim Biophys Acta. 2014. PMID: 24189436 Review.
-
Membrane fluidity of blood cells.Haematologia (Budap). 1996;27(3):109-27. Haematologia (Budap). 1996. PMID: 14653448 Review.
-
On the lateral structure of model membranes containing cholesterol.Biochim Biophys Acta. 2009 Jan;1788(1):2-11. doi: 10.1016/j.bbamem.2008.10.010. Epub 2008 Oct 29. Biochim Biophys Acta. 2009. PMID: 19010302 Review.
-
Lipids on the move: simulations of membrane pores, domains, stalks and curves.Biochim Biophys Acta. 2009 Jan;1788(1):149-68. doi: 10.1016/j.bbamem.2008.10.006. Epub 2008 Oct 25. Biochim Biophys Acta. 2009. PMID: 19013128 Review.
Cited by
-
Is Spontaneous Translocation of Polar Lipids Between Cellular Organelles Negligible?Lipid Insights. 2016 Apr 27;8(Suppl 1):87-93. doi: 10.4137/LPI.S31616. eCollection 2015. Lipid Insights. 2016. PMID: 27147824 Free PMC article. Review.
-
Anandamide Revisited: How Cholesterol and Ceramides Control Receptor-Dependent and Receptor-Independent Signal Transmission Pathways of a Lipid Neurotransmitter.Biomolecules. 2018 May 22;8(2):31. doi: 10.3390/biom8020031. Biomolecules. 2018. PMID: 29789479 Free PMC article. Review.
-
Effect of sphingomyelin headgroup size on molecular properties and interactions with cholesterol.Biophys J. 2010 Nov 17;99(10):3300-8. doi: 10.1016/j.bpj.2010.09.049. Biophys J. 2010. PMID: 21081078 Free PMC article.
-
Update of the 1972 Singer-Nicolson Fluid-Mosaic Model of Membrane Structure.Discoveries (Craiova). 2013 Dec 31;1(1):e3. doi: 10.15190/d.2013.3. Discoveries (Craiova). 2013. PMID: 32309537 Free PMC article. Review.
-
Instability of cholesterol clusters in lipid bilayers and the cholesterol's Umbrella effect.J Phys Chem B. 2010 Jan 21;114(2):840-8. doi: 10.1021/jp909061h. J Phys Chem B. 2010. PMID: 20041657 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources