Active and passive mechanisms of intracellular transport and localization in bacteria
- PMID: 19007909
- DOI: 10.1016/j.mib.2008.10.005
Active and passive mechanisms of intracellular transport and localization in bacteria
Abstract
Spatial complexity is a hallmark of living organisms. All cells adopt specific shapes and organize their contents in such a way that makes possible fundamental tasks such as growth, metabolism, replication, and division. Although many of these tasks in bacteria have been studied extensively, only recently have we begun to understand the influence of spatial organization on cell function. Clearly, bacteria are highly organized cells where proteins do not simply diffuse in a 'cytoplasmic soup' to exert function but can also be localized to specific subcellular sites. In this review, we discuss whether such order can be achieved solely by diffusive capture mechanisms or if active intracellular transport systems are required.
Similar articles
-
Getting organized--how bacterial cells move proteins and DNA.Nat Rev Microbiol. 2008 Jan;6(1):28-40. doi: 10.1038/nrmicro1795. Nat Rev Microbiol. 2008. PMID: 18059290 Review.
-
Polar explorations Recent insights into the polarity of bacterial proteins.Curr Opin Microbiol. 2007 Dec;10(6):617-23. doi: 10.1016/j.mib.2007.10.006. Epub 2007 Nov 19. Curr Opin Microbiol. 2007. PMID: 18006364 Review.
-
An inventory of the bacterial macromolecular components and their spatial organization.FEMS Microbiol Rev. 2011 Mar;35(2):395-414. doi: 10.1111/j.1574-6976.2010.00254.x. Epub 2010 Oct 22. FEMS Microbiol Rev. 2011. PMID: 20969605 Review.
-
Exploration into the spatial and temporal mechanisms of bacterial polarity.Trends Microbiol. 2007 Mar;15(3):101-8. doi: 10.1016/j.tim.2007.01.004. Epub 2007 Feb 1. Trends Microbiol. 2007. PMID: 17275310 Review.
-
Subcellular localization of RNA and proteins in prokaryotes.Trends Genet. 2012 Jul;28(7):314-22. doi: 10.1016/j.tig.2012.03.008. Epub 2012 Apr 21. Trends Genet. 2012. PMID: 22521614 Review.
Cited by
-
Motor-driven intracellular transport powers bacterial gliding motility.Proc Natl Acad Sci U S A. 2011 May 3;108(18):7559-64. doi: 10.1073/pnas.1101101108. Epub 2011 Apr 11. Proc Natl Acad Sci U S A. 2011. PMID: 21482768 Free PMC article.
-
A bacterial Ras-like small GTP-binding protein and its cognate GAP establish a dynamic spatial polarity axis to control directed motility.PLoS Biol. 2010 Jul 20;8(7):e1000430. doi: 10.1371/journal.pbio.1000430. PLoS Biol. 2010. PMID: 20652021 Free PMC article.
-
Macromolecular interactions and geometrical confinement determine the 3D diffusion of ribosome-sized particles in live Escherichia coli cells.Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2406340121. doi: 10.1073/pnas.2406340121. Epub 2025 Jan 24. Proc Natl Acad Sci U S A. 2025. PMID: 39854229 Free PMC article.
-
Three-Dimensional Observations of an Aperiodic Oscillatory Gliding Behavior in Myxococcus xanthus Using Confocal Interference Reflection Microscopy.mSphere. 2020 Jan 29;5(1):e00846-19. doi: 10.1128/mSphere.00846-19. mSphere. 2020. PMID: 31996414 Free PMC article.
-
Single-gene tuning of Caulobacter cell cycle period and noise, swarming motility, and surface adhesion.Mol Syst Biol. 2010 Dec 21;6:445. doi: 10.1038/msb.2010.95. Mol Syst Biol. 2010. PMID: 21179017 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources