Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov;4(11):e1000260.
doi: 10.1371/journal.pgen.1000260. Epub 2008 Nov 14.

Dissection of a QTL hotspot on mouse distal chromosome 1 that modulates neurobehavioral phenotypes and gene expression

Affiliations

Dissection of a QTL hotspot on mouse distal chromosome 1 that modulates neurobehavioral phenotypes and gene expression

Khyobeni Mozhui et al. PLoS Genet. 2008 Nov.

Abstract

A remarkably diverse set of traits maps to a region on mouse distal chromosome 1 (Chr 1) that corresponds to human Chr 1q21-q23. This region is highly enriched in quantitative trait loci (QTLs) that control neural and behavioral phenotypes, including motor behavior, escape latency, emotionality, seizure susceptibility (Szs1), and responses to ethanol, caffeine, pentobarbital, and haloperidol. This region also controls the expression of a remarkably large number of genes, including genes that are associated with some of the classical traits that map to distal Chr 1 (e.g., seizure susceptibility). Here, we ask whether this QTL-rich region on Chr 1 (Qrr1) consists of a single master locus or a mixture of linked, but functionally unrelated, QTLs. To answer this question and to evaluate candidate genes, we generated and analyzed several gene expression, haplotype, and sequence datasets. We exploited six complementary mouse crosses, and combed through 18 expression datasets to determine class membership of genes modulated by Qrr1. Qrr1 can be broadly divided into a proximal part (Qrr1p) and a distal part (Qrr1d), each associated with the expression of distinct subsets of genes. Qrr1d controls RNA metabolism and protein synthesis, including the expression of approximately 20 aminoacyl-tRNA synthetases. Qrr1d contains a tRNA cluster, and this is a functionally pertinent candidate for the tRNA synthetases. Rgs7 and Fmn2 are other strong candidates in Qrr1d. FMN2 protein has pronounced expression in neurons, including in the dendrites, and deletion of Fmn2 had a strong effect on the expression of few genes modulated by Qrr1d. Our analysis revealed a highly complex gene expression regulatory interval in Qrr1, composed of multiple loci modulating the expression of functionally cognate sets of genes.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Highly replicable trans-QTLs in Qrr1.
The charts illustrate the total number of trans-QTLs (LOD≥4) in Qrr1 (shaded) and in other regions of the genome (non-shaded) in three datasets—BXD cerebellum, BXD hippocampus, and B6C3H F2 brain. The smaller charts represent the trans-QTLs in BXD hippocampus that are also detected in BXD cerebellum, and B6C3HF2 brain datasets. Out of the 101 trans-QTLs common to both BXD hippocampus and cerebellum, 64 are in Qrr1 and the remaining 37 are located in other regions of the genome. The BXD hippocampus and B6C3HF2 brain datasets have 54 common trans-QTLs, and almost all (52 out of 54) are in Qrr1.
Figure 2
Figure 2. Haplotype maps of Qrr1 recombinant BXD strains.
BXD8, BXD29, BXD62, BXD64, BXD68, and BXD84 have recombinations in Qrr1. B haplotype is assigned blue (−), D haplotype is assigned pink (+), and recombination regions are shown in grey. The Qrr1 interval (in Mb scale) is shown above and approximate positions of recombination are highlighted (red). The recombinant strains collectively divide Qrr1 into six segments (labeled 1–6), and provide six sets of informative markers. Markers are shown below and approximate positions of candidate genes (yellow bars) and tRNA clusters (orange triangles) are indicated.
Figure 3
Figure 3. QTL mapping precision in Qrr1.
Mapping precision was empirically determined by measuring the distance between a cis-QTL peak and location of parent gene. Cis-QTLs in BXD Hippocampus Consortium, UMUTAffy Hippocampus, and Hamilton Eye datasets were used for this purpose. Mean gene-to-QTL peak distance (y-axis) was plotted as a function of LOD score (LOD score range on x-axis). Number of probe sets in each LOD range is shown. Mapping precision increases with increase in LOD score. The mean offset for cis-QTLs with LOD scores 3–4 (genome-wide adjusted p-value of 0.1–0.01) is 900 kb, and the offset decreases to 650 kb at 4–5 LOD scores (p-value of 0.01–0.001). Cis-QTLs with LOD scores greater than 11 (p-value<10−6) have mean offset of only 450 kb.
Figure 4
Figure 4. Segregation of trans-QTLs in Qrr1.
Expression of Atp5j2, Cplx2, and Nars are modulated by trans-QTLs in Qrr1 (blue plot). D allele has the positive additive effect (green plot; allele effect scale shown on the right) on the expression of Atp5j2 and Cplx2; peak LOD scores are on markers near candidate genes Ndufs2 and Kcnj10. B allele has the positive additive effect (red plot) on the expression of Nars; peak LOD score is on markers near candidate gene Fmn2. The horizontal lines indicate the genome-wide significant thresholds (p-value = 0.05). Yellow seismograph tracks the SNP density between B and D alleles. Affymetrix probe set ID for each transcript in the BXD hippocampus dataset is shown.
Figure 5
Figure 5. QTL for aminoacyl-tRNA synthetases in distal Qrr1.
Transcripts of Gars, Cars, Nars, Mars, and Yars map as trans-QTLs to Qrr1 at LOD>4 (genome-wide p-value<0.01) in the BXD hippocampus dataset. The trans-QTLs have peak LOD precisely on markers in distal part of Qrr1, ∼175–177.5 Mb (shaded regions). Yellow seismograph on Chr 1 (x-axis) tracks SNP density between B and D alleles. Affymetrix probe set ID for each transcript is shown.
Figure 6
Figure 6. SNP comparison between crosses.
SNPs in Qrr1 were counted for (A) C57BL/6J (B6)×DBA/2J (D2), (B) B6×BALB/cBy (BALB), (C) B6×C3H/HeJ (C3H), and (D) ILS×ISS. The SNP distribution profiles were generated by plotting the number of SNPs in 250 kb bins. Vertical red lines mark the approximate positions of recombination (corresponds to figure 2). Region covered by Qrr1p (horizontal line), candidate genes in Qrr1d (yellow bars), and position of tRNA clusters (triangles) are shown above the graphs. The B6×D2, B6×BALB, and B6×C3H crosses have moderate to high SNP counts throughout Qrr1. In the ILSxISS cross, Qrr1p is relatively SNP-rich but Qrr1d is SNP-sparse.
Figure 7
Figure 7. Expression of FMN2 protein in hippocampal neurons.
(A) Neurons exhibited pronounced fine granular immunoreactivity for FMN2. The cell body had the strongest signal. The fine granular staining extended into apical and distal dendrites (arrows). Thin axon-like processes were also labeled (arrow head). (B) The fine granular staining is not detected in controls of sister cultures processed in parallel without the first antibody.
Figure 8
Figure 8. Expression patterns of seizure related genes with cis- and trans-QTLs in Qrr1p.
Candidate gene Kcnj9 (A) has heavy expression in neurons. Kcnj9 shows a regionally restricted expression in the hippocampus with intense labeling in dentate gyrus, strong labeling in CA1, and relatively weak labeling in CA2 and CA3. Candidate gene Kcnj10 (B) has a more diffused pattern and expressed primarily in glial cells. There is almost no labeling for Kcnj10 in the hippocampus. Transcripts of seizure-related genes, Cacna1g (C) and Socs2 (D), have trans-QTLs in Qrr1p. Both genes show high expression in neurons. Cacna1g matches the expression of Kcnj9 with strong labeling in dentate gyrus and CA1, and weak labeling in CA2 and CA3. Socs2 complements the expression of Kcnj9 and Cacna1g with intense labeling in CA2 and CA3. In Situ expression data are from the Allen Brain Atlas.

References

    1. DeFries JC, Gervais MC, Thomas EA. Response to 30 generations of selection for open-field activity in laboratory mice. Behav Genet. 1978;129:1432–1435. - PubMed
    1. Caldarone B, Saavedra C, Tartaglia K, Wehner JM, Dudek BC, et al. Quantitative trait loci analysis affecting contextual conditioning in mice. Nat Genet. 1997;17:335–337. - PubMed
    1. Gershenfeld HK, Neumann PE, Mathis C, Crawley JN, Li X, et al. Mapping quantitative trait loci for open-field behavior in mice. Behav Genet. 1997;27:201–210. - PubMed
    1. Flint J, Corley R, DeFries JC, Fulker DW, Gray JA, et al. A simple genetic basis for a complex psychological trait in laboratory mice. Science. 1995;269:1432–1435. - PubMed
    1. Turri MG, Talbot CJ, Radcliffe RA, Wehner JM, Flint J. High-resolution mapping of quantitative trait loci for emotionality in selected strains of mice. Mamm Genome. 1999;10:1098–1101. - PubMed

Publication types

MeSH terms

LinkOut - more resources