N95 and p100 respirator filter efficiency under high constant and cyclic flow
- PMID: 19012163
- DOI: 10.1080/15459620802558196
N95 and p100 respirator filter efficiency under high constant and cyclic flow
Abstract
This study investigated the effect of high flow conditions on aerosol penetration and the relationship between penetration at constant and cyclic flow conditions. National Institute for Occupational Safety and Health (NIOSH)-approved N95 and P100 filtering facepiece respirators and cartridges were challenged with inert solid and oil aerosols. A combination of monodisperse aerosol and size-specific aerosol measurement equipment allowed count-based penetration measurement of particles with nominal diameters ranging from 0.02 to 2.9 microm. Three constant flow conditions (85, 270, and 360 L/min) were selected to match the minute, inhalation mean, and inhalation peak flows of the four cyclic flow conditions (40, 85, 115, and 135 L/min) tested. As expected, penetration was found to increase under increased constant and cyclic flow conditions. The most penetrating particle size (MPPS) generally ranged from 0.05 to 0.2 microm for P100 filters and was approximately 0.05 microm for N95 filters. Although penetration increased at the high flow conditions, the MPPS was relatively unaffected by flow. Of the constant flows tested, the flows equivalent to cyclic inhalation mean and peak flows best approximated the penetration measurements of the corresponding cyclic flows.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials