Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar 2;198(1):74-82.
doi: 10.1016/j.bbr.2008.10.024. Epub 2008 Nov 1.

Reduced motor and sensory functions and emotional response in GM3-only mice: emergence from early stage of life and exacerbation with aging

Affiliations

Reduced motor and sensory functions and emotional response in GM3-only mice: emergence from early stage of life and exacerbation with aging

Orie Tajima et al. Behav Brain Res. .

Abstract

Sialic acid-containing glycosphingolipids (gangliosides) have been believed to play a role in the regulation and protection of nervous tissues. To clarify their function in the nervous system in vivo, double knockout (DKO) mice of GM2/GD2 synthase and GD3 synthase genes were generated and abnormal behaviors were analyzed. Mutant mice exhibited reduced weight and a round shape of the whole brain that progressively emerged with aging, and displayed motor dysfunction in the footprint, traction, open-field, and 24h locomotion activity tests. Sensory functions were also reduced in the von Frey and hot plate tests and greatly reduced in the acoustic startle response test. For emotional behavior, fear response was clearly decreased. Numerous neuronal dysfunctions were found even in younger mutant mice examined at 10-23 weeks after birth, which were exacerbated with aging. These results suggest that a lack of gangliosides other than GM3 induces severe neuronal degeneration in the early stage of life, and that the expression of complex gangliosides is essential to maintain the integrity of the nervous system throughout life.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources