Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Apr 15;266(11):6780-5.

Transmembrane signal transduction and osmoregulation in Escherichia coli. Functional importance of the periplasmic domain of the membrane-located protein kinase, EnvZ

Affiliations
  • PMID: 1901856
Free article

Transmembrane signal transduction and osmoregulation in Escherichia coli. Functional importance of the periplasmic domain of the membrane-located protein kinase, EnvZ

S Tokishita et al. J Biol Chem. .
Free article

Abstract

The EnvZ protein is presumably a membrane-located osmotic sensor which is involved in expression of the ompF and ompC genes in Escherichia coli. Previously, we developed an in vitro method for analyzing the intact form of the EnvZ protein located in isolated cytoplasmic membranes, and demonstrated that this particular form of the EnvZ protein exhibits the ability not only as to OmpR phosphorylation but also OmpR dephosphorylation. In this study, to gain an insight into the structural and functional importance of the putative periplasmic domain of the EnvZ protein, a set of mutant EnvZ proteins, which lack various portions of the periplasmic domain, were characterized in terms of not only their in vivo osmoregulatory phenotypes but also in vitro EnvZ-OmpR phosphotransfer reactions. It was revealed that these deletion mutant EnvZ proteins are normally incorporated into the cytoplasmic membrane. Cells harboring these mutant EnvZ proteins showed a pleiotropic phenotype, namely, OmpF- Mal- LamB- PhoA-, and produced the OmpC protein constitutively irrespective of the medium osmolarity. It was also suggested that all of these mutant EnvZ proteins were defective in their in vitro OmpR dephosphorylation ability, while their OmpR phosphorylation ability remained unaffected. These results imply the functional importance of the periplasmic domain of the EnvZ protein for modulation of the kinase/phosphatase activity exhibited by the cytoplasmic domain in response to an environmental osmotic stimulus.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources