Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;12(6):R146.
doi: 10.1186/cc7128. Epub 2008 Nov 20.

Recombinant human activated protein C ameliorates oleic acid-induced lung injury in awake sheep

Affiliations

Recombinant human activated protein C ameliorates oleic acid-induced lung injury in awake sheep

Kristine Waerhaug et al. Crit Care. 2008.

Abstract

Introduction: Acute lung injury (ALI) may arise both after sepsis and non-septic inflammatory conditions and is often associated with the release of fatty acids, including oleic acid (OA). Infusion of OA has been used extensively to mimic ALI. Recent research has revealed that intravenously administered recombinant human activated protein C (rhAPC) is able to counteract ALI. Our aim was to find out whether rhAPC dampens OA-induced ALI in sheep.

Methods: Twenty-two yearling sheep underwent instrumentation. After 2 days of recovery, animals were randomly assigned to one of three groups: (a) an OA+rhAPC group (n = 8) receiving OA 0.06 mL/kg infused over the course of 30 minutes in parallel with an intravenous infusion of rhAPC 24 mg/kg per hour over the course of 2 hours, (b) an OA group (n = 8) receiving OA as above, or (c) a sham-operated group (n = 6). After 2 hours, sheep were sacrificed. Hemodynamics was assessed by catheters in the pulmonary artery and the aorta, and extravascular lung water index (EVLWI) was determined with the single transpulmonary thermodilution technique. Gas exchange was evaluated at baseline and at cessation of the experiment. Data were analyzed by analysis of variance; a P value of less than 0.05 was regarded as statistically significant.

Results: OA induced profound hypoxemia, increased right atrial and pulmonary artery pressures and EVLWI markedly, and decreased cardiac index. rhAPC counteracted the OA-induced changes in EVLWI and arterial oxygenation and reduced the OA-induced increments in right atrial and pulmonary artery pressures.

Conclusions: In ovine OA-induced lung injury, rhAPC dampens the increase in pulmonary artery pressure and counteracts the development of lung edema and the derangement of arterial oxygenation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Changes in pulmonary artery pressure (PAP), right atrial pressure (RAP), and extravascular lung water index (EVLWI) in awake instrumented sheep subjected to intravenous bolus injection of oleic acid (OA) and co-administration of recombinant human activated protein C (rhAPC). In the figure, OA refers to the oleic acid-alone group (n = 8), OA+rhAPC refers to the rhAPC-treated OA group (n = 8), and sham refers to sham-operated animals (n = 6). Data are presented as mean ± standard error of the mean. *P < 0.05 between OA and OA+rhAPC groups; P < 0.05 from t = 0 hours in the OA group; P < 0.05 from t = 0 hours in the OA+rhAPC group.
Figure 2
Figure 2
Changes in arterial oxygen partial pressure (PaO2) and mixed venous oxygen saturation (SvO2) in awake instrumented sheep subjected to intravenous bolus injection of oleic acid (OA) and co-administration of recombinant human activated protein C (rhAPC). In the figure, OA refers to the oleic acid-alone group (n = 8), OA+rhAPC refers to the rhAPC-treated OA group (n = 8), and sham refers to sham-operated animals (n = 6). Data are presented as mean ± standard error of the mean. *P < 0.05 between OA and OA+rhAPC groups; P < 0.05 from t = 0 hours in the OA group.

Comment in

References

    1. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342:1301–1308. doi: 10.1056/NEJM200005043421801. - DOI - PubMed
    1. Quinlan GJ, Lamb NJ, Evans TW, Gutteridge JM. Plasma fatty acid changes and increased lipid peroxidation in patients with adult respiratory distress syndrome. Crit Care Med. 1996;24:241–246. doi: 10.1097/00003246-199602000-00010. - DOI - PubMed
    1. Baughman RP, Stein E, MacGee J, Rashkin M, Sahebjami H. Changes in fatty acids in phospholipids of the bronchoalveolar fluid in bacterial pneumonia and in adult respiratory distress syndrome. Clin Chem. 1984;30:521–523. - PubMed
    1. Bursten SL, Federighi DA, Parsons P, Harris WE, Abraham E, Moore EE, Jr, Moore FA, Bianco JA, Singer JW, Repine JE. An increase in serum C18 unsaturated free fatty acids as a predictor of the development of acute respiratory distress syndrome. Crit Care Med. 1996;24:1129–1136. doi: 10.1097/00003246-199607000-00011. - DOI - PubMed
    1. Schuster DP. ARDS: clinical lessons from the oleic acid model of acute lung injury. Am J Respir Crit Care Med. 1994;149:245–260. - PubMed

Publication types