Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2009 Jan 15;169(2):231-3; discussion 234-5.
doi: 10.1093/aje/kwn352. Epub 2008 Nov 20.

Invited commentary: efficient testing of gene-environment interaction

Affiliations
Comment

Invited commentary: efficient testing of gene-environment interaction

Nilanjan Chatterjee et al. Am J Epidemiol. .

Abstract

Gene-environment-wide interaction studies of disease occurrence in human populations may be able to exploit the same agnostic approach to interrogating the human genome used by genome-wide association studies. The authors discuss 2 methods for taking advantage of possible independence between a single nucleotide polymorphism they call G (a genetic factor) and an environmental factor they call E while maintaining nominal type I error in studying G-E interaction when information on many genes is available. The first method is a simple 2-step procedure for testing the null hypothesis of no multiplicative interaction against the alternative hypothesis of a multiplicative interaction between an E and at least one of the markers genotyped in a genome-wide association study. The added power for the method derives from a clever work-around of a multiple testing procedure. The second is an empirical-Bayes-style shrinkage estimation framework for G-E interaction and the associated tests that can gain efficiency and power when the G-E independence assumption is met for most G's in the underlying population and yet, unlike the case-only method, is resistant to increased type I error when the underlying assumption of independence is violated. The development of new approaches to testing for interaction is an example of methodological progress leading to practical advantages.

PubMed Disclaimer

Comment on

References

    1. Murcray CE, Lewinger JP, Gauderman WJ. Gene-environment interaction in genome-wide association studies. Am J Epidemiol. 2009;169(2):219–226. - PMC - PubMed
    1. Wacholder S, Chanock S, Garcia-Closas M, et al. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96(6):434–442. - PMC - PubMed
    1. Mukherjee B, Chatterjee N. Exploiting gene-environment independence for analysis of case-control studies: an empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency. Biometrics. 2008;64(3):685–694. - PubMed
    1. Piegorsch WW, Weinberg CR, Taylor JA. Non-hierarchical logistic models and case-only designs for assessing susceptibility in population-based case-control studies. Stat Med. 1994;13(2):153–162. - PubMed
    1. Albert PS, Ratnasinghe D, Tangrea J, et al. Limitations of the case-only design for identifying gene-environment interactions. Am J Epidemiol. 2001;154(8):687–693. - PubMed

Publication types

Substances