Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov;31(11):1437-45.
doi: 10.1007/s12272-001-2128-8. Epub 2008 Nov 21.

Signaling mechanisms of sphingosine 1-phosphate-induced ERK1/2 activation in cultured feline esophageal smooth muscle cells

Affiliations

Signaling mechanisms of sphingosine 1-phosphate-induced ERK1/2 activation in cultured feline esophageal smooth muscle cells

Fa Yong Chung et al. Arch Pharm Res. 2008 Nov.

Abstract

Sphingosine 1-phosphate (S1P) is a bioactive lipid, stored and released from activated platelets, macrophages, and other mammalian cells. We previously reported that S1P induces esophageal smooth muscle contraction in freshly isolated intact cells. Here, we measured S1P-induced ERK1/2 activation and upstream signaling in cultured feline esophageal smooth muscle cells. Activation of ERK1/2 by S1P peaked at 5 min, was sustained up to 30 min, and was blocked by PTX. In contrast, S1P did not activate p38 MAPK or JNK. PTX inhibited S1P-induced ERK1/2 activation. We then used phospholipase inhibitors, DEDA for PLA(2), U73122 for PLC, and rhoCMB for PLD, to determine that ERK1/2 activation was downstream of PLC activation. The PKC inhibitors, GF109203X and chelerythrine, also suppressed ERK1/2 activation. Whereas the PTK inhibitor, genistein, partially inhibited ERK1/2 activation, the EGFR tyrosine kinase inhibitor, tyrphostin 51, had no effect. Taken together, S1P-induced ERK1/2 activation in cultured ESMCs requires a PTX-sensitive G protein, stimulation of the PLC pathway, and subsequent activation of the PKC and PTK pathways.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources