Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Dec;38(6):399-410.
doi: 10.1016/j.neucli.2008.09.010. Epub 2008 Oct 16.

Proprioceptive perturbations of stability during gait

Affiliations
Review

Proprioceptive perturbations of stability during gait

J Duysens et al. Neurophysiol Clin. 2008 Dec.

Abstract

Through recent studies, the role of proprioceptors in reactions to perturbations during gait has been finally somewhat better understood. The input from spindle afferents has been investigated with tendon taps, vibration and other forms of muscle stretches, including some resembling natural perturbations (stumbling, slips, and ankle inversions). It was found that activation of spindle afferents produces short-latency response (SLR), consistent with a fast spinal pathway. These reflexes induce relatively minor activation in the stretched muscles. A central question is whether stretch reflexes can occur for stimuli that are quite remote. Thus, a new study was made to examine whether foot sole vibration is able to elicit reflex responses in upper-leg muscles, for example by conduction of vibrations throughout the whole leg. SLR responses were indeed found not only in lower- but also in upper-leg muscles. Similarly during stumbling, SLR are observed throughout the whole limb, although the primary perturbation occurs at foot level. After the SLR, much stronger activations usually occur, with latencies (85 or 120ms) well below those seen in voluntary contractions. These late responses are much more selective and presumably linked to the maintenance of stability. The role of the I(b) afferents from the Golgi tendon organs (GTO) is less clear. From animal work, it is known that these afferents are very sensitive to active muscle contraction and that they play a role in providing reinforcing feedback to extensors during the stance phase. The available evidence supports this notion in humans but lack of selective activation methods precludes more conclusive confirmation.

PubMed Disclaimer

Publication types

LinkOut - more resources