Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jan 15;139(2):146-51.
doi: 10.1016/j.jbiotec.2008.10.007. Epub 2008 Nov 5.

Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina

Affiliations

Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina

Zhang Guangtao et al. J Biotechnol. .

Abstract

The industrially applied ascomycete Hypocrea jecorina (synonym: Trichoderma reesei) exhibits a low rate of exogenous DNA integration by homologous recombination (HR). This hinders the high-throughput generation of strains by gene replacement and is therefore impeding systematic functional gene analyses towards, e.g. strain improvement for protein or enzyme production. To increase the rate of HR events during fungal transformation we identified and deleted the orthologue of the human KU70 in H. jecorina, which is required for the nonhomologous end joining (NHEJ) pathway and responsible for ectopic DNA integration. The effect of the absence of the H. jecorina tku70 on gene targeting was tested by deletion of two so far uncharacterized genes encoding a short chain dehydrogenase and a fungal specific transcription factor. Efficiency of gene targeting for both genes was >95% in a Deltatku70 strain when 1kb homologous flanking regions were used in the deletion construct. This is a significant increase in targeting efficiency compared to the parental - non-tku70 deleted - strain TU-6 where a gene knock-out frequency of only 5-10% was observed. Together with the recently annotated genomic sequence of H. jecorina, this system provides a useful tool for a genome-wide functional gene analysis on a high-throughput scale to improve the biotechnological potential of this fungus.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources