Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Dec;87(12):1089-99.
doi: 10.1177/154405910808701205.

Dento-craniofacial phenotypes and underlying molecular mechanisms in hypohidrotic ectodermal dysplasia (HED): a review

Affiliations
Review

Dento-craniofacial phenotypes and underlying molecular mechanisms in hypohidrotic ectodermal dysplasia (HED): a review

F Clauss et al. J Dent Res. 2008 Dec.

Abstract

The hypohidrotic ectodermal dysplasias (HED) belong to a large and heterogeneous nosological group of polymalfomative syndromes characterized by dystrophy or agenesis of ectodermal derivatives. Molecular etiologies of HED consist of mutations of the genes involved in the Ectodysplasin (EDA)-NF-kappaB pathway. Besides the classic ectodermal signs, craniofacial and bone manifestations are associated with the phenotypic spectrum of HED. The dental phenotype of HED consists of various degrees of oligodontia with other dental abnormalities, and these are important in the early diagnosis and identification of persons with HED. Phenotypic dental markers of heterozygous females for EDA gene mutation-moderate oligodontia, conical incisors, and delayed dental eruption-are important for individuals giving reliable genetic counseling. Some dental ageneses observed in HED are also encountered in non-syndromic oligodontia. These clinical similarities may reflect possible interactions between homeobox genes implicated in early steps of odontogenesis and the Ectodysplasin (EDA)-NF-kappaB pathway. Craniofacial dysmorphologies and bone structural anomalies are also associated with the phenotypic spectrum of persons with HED patients. The corresponding molecular mechanisms involve altered interactions between the EDA-NF-kappaB pathway and signaling molecules essential in skeletogenic neural crest cell differentiation, migration, and osteoclastic differentiation. Regarding oral treatment of persons with HED, implant-supported prostheses are used with a relatively high implant survival rate. Recently, groundbreaking experimental approaches with recombinant EDA or transgenesis of EDA-A1 were developed from the perspective of systemic treatment and appear very promising. All these clinical observations and molecular data allow for the specification of the craniofacial phenotypic spectrum in HED and provide a better understanding of the mechanisms involved in the pathogenesis of this syndrome.

PubMed Disclaimer

LinkOut - more resources