The role of histone deacetylases in prostate cancer
- PMID: 19029799
- PMCID: PMC2683066
- DOI: 10.4161/epi.3.6.7273
The role of histone deacetylases in prostate cancer
Abstract
Epigenetic modifications play a key role in the patho-physiology of prostate cancer. Histone deacetylases (HDACs) play major roles in prostate cancer progression. HDACs are part of a transcriptional co-repressor complex that influences various tumor suppressor genes. Because of the significant roles played by HDACs in various human cancers, HDAC inhibitors are emerging as a new class of chemotherapeutic agents. HDAC inhibitors have been shown to induce cell growth arrest, differentiation and/or apoptosis in prostate cancer. The combined use of HDAC inhibitors with other chemotherapeutic agents or radiotherapy in cancer treatment has shown promising results. Various HDAC inhibitors are in different stages of clinical trials. In this review, we discuss the molecular mechanism(s) through which HDACs influence prostate cancer progression and the potential roles of HDAC inhibitors in prostate cancer prevention and therapy.
References
-
- Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393:386–9. - PubMed
-
- Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998;19:187–91. - PubMed
-
- Murphy TM, Perry AS, Lawler M. The emergence of DNA methylation as a key modulator of aberrant cell death in prostate cancer. Endocr Relat Cancer. 2008;15:11–25. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical