Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec;14(12):1343-50.
doi: 10.1038/nm.1884. Epub 2008 Nov 23.

Granulysin is a key mediator for disseminated keratinocyte death in Stevens-Johnson syndrome and toxic epidermal necrolysis

Granulysin is a key mediator for disseminated keratinocyte death in Stevens-Johnson syndrome and toxic epidermal necrolysis

Wen-Hung Chung et al. Nat Med. 2008 Dec.

Abstract

Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are life-threatening adverse drug reactions characterized by massive epidermal necrosis, in which the specific danger signals involved remain unclear. Here we show that blister cells from skin lesions of SJS-TEN primarily consist of cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, and both blister fluids and cells were cytotoxic. Gene expression profiling identified granulysin as the most highly expressed cytotoxic molecule, confirmed by quantitative PCR and immunohistochemistry. Granulysin concentrations in the blister fluids were two to four orders of magnitude higher than perforin, granzyme B or soluble Fas ligand concentrations, and depleting granulysin reduced the cytotoxicity. Granulysin in the blister fluids was a 15-kDa secretory form, and injection of it into mouse skin resulted in features mimicking SJS-TEN. Our findings demonstrate that secretory granulysin is a key molecule responsible for the disseminated keratinocyte death in SJS-TEN and highlight a mechanism for CTL- or NK cell--mediated cytotoxicity that does not require direct cellular contact.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

Substances