Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009;28(4):349-55.
doi: 10.1002/nau.20642.

The effect of bladder outlet obstruction on alpha1- and beta-adrenoceptor expression and function

Affiliations

The effect of bladder outlet obstruction on alpha1- and beta-adrenoceptor expression and function

Maurits M Barendrecht et al. Neurourol Urodyn. 2009.

Abstract

Aims: To explore possible changes in expression and/or function of alpha(1)- and beta-adrenoceptor subtypes as a cause for bladder dysfunction in a rat model of bladder outlet obstruction (BOO).

Methods: BOO was induced in rats by partial urethral ligature. Contraction and relaxation experiments were performed with isolated bladder strips from BOO, sham-operated and non-operated (control) rats 7 days after BOO induction. mRNA expression of alpha(1)- and beta-adrenoceptor subtypes was assessed by quantitative real-time PCR.

Results: Receptor-independent contraction or relaxation did not differ between BOO and sham rats. The alpha(1)-agonists methoxamine and A-61,603 caused only weak contraction without major differences between groups. Against KCl-induced tone, the beta-adrenoceptor agonists noradrenaline and isoprenaline caused similar relaxation in BOO and sham rats, whereas relaxation in response to the beta(3)-selective BRL 37,344 was attenuated. Against passive tension, noradrenaline induced relaxation in sham and control rats; in contrast, noradrenaline induced contraction at low concentrations and relaxation at high concentrations in BOO rats. The contraction component was abolished by the alpha(1)-antagonist prazosin. The mRNA expression of alpha(1D)-adrenoceptors was increased in BOO, whereas none of the other receptor mRNAs were up-regulated.

Conclusions: In a rat BOO model, weak contraction responses to alpha(1)-agonists and relaxation responses to beta-agonists are not altered to a major extent. Nevertheless, relaxation responses to the endogenous agonist noradrenaline are turned into alpha(1)-adrenoceptor-mediated contraction responses in BOO, possibly due to an up-regulation of alpha(1D)-adrenoceptors.

PubMed Disclaimer

MeSH terms

LinkOut - more resources